K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

23 tháng 4 2018

Bài 1:

+) Có: \(2^{12}\equiv1\left(mod13\right)\)

\(\left(2^{12}\right)^5\equiv1^5\equiv1\left(mod13\right)\)

=> \(2^{60}\cdot2^{10}\equiv1\cdot10\equiv10\left(mod13\right)\) (*)

+) Có: \(3^{12}\equiv1\left(mod13\right)\)

\(\left(3^{12}\right)^5\equiv1^5\equiv1\left(mod13\right)\)

\(\Rightarrow3^{60}\cdot3^{10}\equiv1\cdot3\equiv3\left(mod13\right)\) (**)

Từ (*); (**)

=> \(2^{70}+3^{70}\equiv10+3\equiv13\left(mod13\right)\)

hay \(2^{70}+3^{70}⋮13\left(đpcm\right)\)

Bài 2 : Làm tương tự '-,,,,

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)

28 tháng 1 2016

giải bằng phép đồng dư giúp mk

3 tháng 4 2015

\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)Nhận xét: 

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}<\frac{1}{11}+...+\frac{1}{11}=\frac{10}{11}<\frac{10}{10}=1\)

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}<\frac{1}{21}+...+\frac{1}{21}=\frac{10}{21}<\frac{10}{20}=\frac{1}{2}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}<\frac{1}{31}+...+\frac{1}{40}=\frac{10}{31}<\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}<\frac{1}{41}+...+\frac{1}{41}=\frac{10}{41}<\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}<\frac{1}{51}+...+\frac{1}{60}=\frac{10}{51}<\frac{10}{50}=\frac{1}{5}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}<\frac{1}{61}+...+\frac{1}{61}=\frac{10}{61}<\frac{10}{60}=\frac{1}{6}\)

\(A<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)<1+1+\frac{1}{2}=\frac{5}{2}\)(ĐPCM)

 

 

22 tháng 11 2016

a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)

\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)

b) 270 + 370 = (22)35 + (32)35 = 435 + 935

\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)

\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)

 

22 tháng 11 2016

t chỉ lm 2 câu đại diện, c` lại tương tự