Tìm x, y biết:\(\hept{\begin{cases}x^2+y^2+xy=3\\2x^2+3xy=1+4x\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^3+y^3=2\\xy\left(x+y\right)=2\end{cases}}\)
Trừ cho nhau có nghiệm
\(\left(x+y\right)\left[\left(x^2-xy+y^2\right)-xy\right]=0\)
\(\orbr{\begin{cases}x+y=0\left(loai\right)\\\left(x-y\right)^2=0\Rightarrow x=y\end{cases}}\)\(2x^3=2\Rightarrow x=1\) Kết luận có nghiệm x=y=1
Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
1. Hướng làm đặt kiểu tổng tích.
\(\hept{\begin{cases}4x^2-4x+4\left(y^2-2y\right)=22-1-4=17\\\left(4x^2-4x\right).4\left(y^2-2y\right)=2.16=32\end{cases}}\)
2. \(x^2y^2+2y-x-x^2y^2-x-y=2xy-3xy
\)
\(y-2x=xy< =>
y\left(1-x\right)=2x=>y=\frac{2x}{1-x}\)
. Hoặc
chia 2 vế pt cho xy(xy khác 0) vầ đặt biến \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\)
\(\hept{\begin{cases}x^2+y^2+xy=3\left(1\right)\\2x^2+3xy=1+4x\left(2\right)\end{cases}}\)
Lấy (1) + (2) ta được
\(3x^2+y^2+4xy-4-4x=0\)
\(\Leftrightarrow\left(y+x-2\right)\left(y+3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2-x\\y=-2-3x\end{cases}}\)
Thế \(y=2-x\)vào (1) ta được
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow x=1\Rightarrow y=1\)
Tương tự cho trường hợp còn lại.
x2 + y2 + xy = 3