Bài 1: Cho hình vuông ABCD. Lấy E trên cạnh AB, lấy F trên cạnh BC sao cho BE=BF. Gọi H là hình chiếu của B trên CE.
1) Chứng minh ∆HBC đồng dạng với ∆BDC
2) Chứng minh \(\dfrac{CH}{CD}\)=\(\dfrac{BH}{BF}\)và so sánh góc DCH và góc FBH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chứng minh:
S A E F = S A B C D = 1 4 S A B F
b) Từ câu a suy ra EH = CK
c) Gọi SBDE = S1; SADE = S2;
Ta chứng minh DE = DC;
Ta tính được:
ABDC = S1; SADC = S2, suy ra SABC = 2(S1 + S2) = 2.SABD
a: Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF
và AB=AC
nên BE=CF
Xét ΔABF và ΔACE có
AB=AC
góc BAF chung
AF=AE
Do đó: ΔABF=ΔACE
Suy ra: BF=CE
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
a: Xét ΔEAD và ΔEBK có
góc EAD=góc EBK
góc AED=góc BEK
=>ΔEAD đồng dạng với ΔEBK
b: Xét ΔAED và ΔHDC có
góc AED=góc HDC
góc A=góc DHC
=>ΔAED đồng dạngvới ΔHDC
=>AE/HD=AD/HC
=>AE*HC=HD*AD
d: CD^2+CB*KB
=BC^2+BC*KB
=BC*(BC+KB)
=BC*KC
=CD*KC=CH*KD
e) Chứng minh HI, ST, KF đồng quy.
Gọi O là giao điểm của EI và HK.
Xét tứ giác HIKE ta có:
góc IHE = 900 (HI _|_ EB tại H)
góc IKE = 900 (KI _|_ EC tại K)
góc HEK = 900 (tứ giác ABEC là hình chữ nhật)
=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)
=> góc HIK = 900
=> KI _|_ HI tại I
Xét hình chữ nhật HIKE ta có:
2 đường chéo EI và HK cắt nhau tại O (cách vẽ)
=> O là trung điểm của EI và O là trung điểm của HK
Xét tam giác FEI vuông tại F ta có:
FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)
=> FO = 1/2 EI
Mà EI = HK (tứ giác HIKE là hình chữ nhật)
Nên FO = 1/2 Hk
Xét tam giác FHK ta có:
FO là đường trung tuyến (O là trung điểm của HK)
FO = 1/2 HK (cmt)
=> tam giác FHK vuông tại F
=> HF _|_ FK tại F
Xét tam giác SHK ta có:
ST là đường cao (ST _|_ HK tại T)
HI là đường cao (HI _|_ KI tại I)
KF là đường cao (KF _|_ HF tại F)
=> HI, ST, KF đồng quy tại một điểm (đpcm)
1:
Sửa đề: ΔBEC
Xét ΔHBC vuông tại H và ΔBEC vuông tại B có
góc HCB chung
=>ΔHBC đồng dạng với ΔBEC
2: ΔHBC đồng dạng với ΔBEC
=>CH/CB=BH/BE
=>CH/CD=BH/BF
ko đc sửa đề bạn ơi