K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

áp dụng a/b>=(a+m)/(b+m)                    khi a/b>1; a,b cùng dấu

=>(a+b)/c >=2(a+b)/(a+b+c)

tương tự biến đổi 2 cái còn lại rồi cộng từng vế với nhau

24 tháng 7 2019

Áp dụng BĐT cosi ta có 

\(\frac{a^6}{b^3}+\frac{b^6}{c^3}+1\ge3\sqrt[3]{\frac{a^6.b^3}{c^3}}=\frac{3a^2b}{c}\)

\(\frac{b^6}{c^3}+\frac{c^6}{a^3}+1\ge\frac{3b^2c}{a}\)

\(\frac{c^6}{a^3}+\frac{a^6}{b^3}+1\ge\frac{3c^2a}{b}\)

Cộng 3 bĐt trên

=> \(2.VT+3\ge3\left(\frac{a^2b}{c}+\frac{b^2c}{a}+\frac{c^2a}{b}\right)=9\)

=> \(VT\ge3\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

17 tháng 6 2019

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

12 tháng 8 2017

Bài 1:

Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)

Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)

Khi a=b=c

13 tháng 8 2017

Thanks

11 tháng 4 2020

không giải theoo cách đó được

Dùng SOS nhé :>>>

15 tháng 7 2015

Áp dụng bất đẳng thức Min.cop.xki 

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Dấu "=" xảy ra khi \(\frac{a}{c}=\frac{b}{d}\) (Chứng minh bằng biến đổi tương đương)

Áp dụng:

\(S=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)^2}+\sqrt{c^2+\frac{1}{a+b}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)^2}\)

Theo Bunhiacopxki: \(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)^2+\frac{81}{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}\ge\left(a+b+c\right)^2+\frac{81}{6\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{32}+\frac{81}{12\left(a+b+c\right)}+\frac{81}{12\left(a+b+c\right)}+\frac{31}{32}\left(a+b+c\right)^2\)

\(\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{32}.\frac{81}{12\left(a+b+c\right)}.\frac{81}{12\left(a+b+c\right)}}+\frac{31}{32}.6^2\)

\(=\frac{153}{4}=\left(\frac{3\sqrt{17}}{2}\right)^2\)

\(\Rightarrow S\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=2\).