K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2023

- Với \(m=0\Rightarrow f\left(x\right)=-4x-5>0\) khi \(x< -\dfrac{5}{4}\) (ktm)

- Với \(m\ne0\Rightarrow f\left(x\right)< 0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-4< m< -\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow-4< m< -\dfrac{1}{3}\)

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

\(\Delta=\left(-2m+4\right)^2-4\cdot\left(-1\right)\left(m+3\right)\)

=4m^2-16m+16+4(m+3)

=4m^2-16m+16+4m+12

=4m^2-12m+28

Để f(x)<0 với mọi x thì 4m^2-12m+28<0 và -1<0

=>\(m\in\varnothing\)

13 tháng 3 2021

Đề còn thiếu kìa.

15 tháng 3 2023

Hàm số luôn âm khi ∆ < 0

⇔1 + 4(3m + 1) < 0

⇔12m + 5 < 0

⇔ 12m < -5

⇔ m < -5/12

Vậy m < -5/12 thì hàm số luôn âm

NV
15 tháng 3 2022

Chắc đề là \(f\left(x\right)=x^2+mx+m+3\)

Để \(f\left(x\right)>0;\forall x\in R\)

\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)< 0\)

\(\Leftrightarrow m^2-4m-12< 0\)

\(\Rightarrow-2< m< 6\)