Tìm GTLN : R=\(\frac{2013}{\left(x-2\right)^2+\left(x-y\right)^4+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0
Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Dấu = xảy ra khi \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)
Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)
\(y+\frac{1}{2}=0;y=-\frac{1}{2}\)
Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)
a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2
b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2
Ta để ý thấy rằng :
- Các số mũ có cơ số bất kì mà số mũ là chẵn thì luôn lớn hơn hoặc bằng 0; Hay :
\(\left(x-2\right)^2\ge0;\left(x-4\right)^2\ge0\)
Biểu thức trên đã có giá trị xác định ở trên tử , còn lại ẩn x và y ở mẫu nên để biểu thức dạng phân số có giá trị nhỏ nhất thì mẫu phải bé nhất;
Ta có: \(Q=\left(x-2\right)^2+\left(x-y\right)^2+3\ge3\)
=> Min Q=3 khi (x-2)=0 và (x-y ) =0 ;
Vậy giá trị lớn nhất của R =\(\dfrac{2013}{3}=671\)
CHÚC BẠN HỌC TỐT...
Ta có: R lớn nhất khi \(\left(x-2\right)^2+\left(x-y\right)^4+3\) nhỏ nhất
Vì: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(x-y\right)^4\ge0\forall x,y\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^4=0\end{matrix}\right.\)
thì R nhỏ nhất \(\Rightarrow\left\{{}\begin{matrix}x=2\\\left(2-y\right)^4=0\Rightarrow y=2\end{matrix}\right.\)
\(\Rightarrow MIN_{\left(x-2\right)^2+\left(x-y\right)^4+3}=0+0+3=3\)
\(\Rightarrow R_{MAX}=\dfrac{2013}{3}=671\) khi \(x=y=2\)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
Xét mẫu (x-2)2+(x-y)4+3
R đạt GTLN khi (x-2)2+(x-y)4+3 nhỏ nhất
Ta có \(\left(x-2\right)^2\ge0\)
\(\left(x-y\right)^4\ge0\)
=>(x-2)2+(x-y)4+3\(\ge3\)
Vậy mẫu số đạt GTNN là 3 khi x=y=2
Khi đó GTLN của R là 2013/3
Vì \(\left(x-2\right)^2\ge0\forall x\in R\)
\(\left(x-y\right)^4\ge0\forall x;y\in R\)
\(\Rightarrow\left(x-2\right)^2+\left(x-y\right)^2+3\ge3\forall x;y\in R\)
Để biểu thức\(R_{max}\Leftrightarrow\)\(\left(x-2\right)^2+\left(x-y\right)^4+3=3\Rightarrow\left(x-2\right)^2=\left(x-y\right)^4=0\)
Ta có \(:\)\(\left(x-2\right)^2=0\Rightarrow x=0+2=2\)
Thay \(x=2\)vào \(\left(x-y\right)^4=0\)ta có \(:\)
\(\left(x-y\right)^4=\left(2-y\right)^4=0\Rightarrow y=2-0=2\)
\(\Rightarrow R_{max}=\frac{2013}{\left(2-2\right)^2+\left(2-2\right)^2+3}=\frac{2013}{3}\)
Vậy GTLN của \(R=\frac{2013}{3}\)tại \(x=2;y=2\)