CMR: \(n^n+5n^2-11n+5\) chia hết cho \(\left(n-1\right)^2\) với \(n\in N,n>1\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=4n\left(2n+2\right)⋮8\)
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a)
\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)
b)
\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)
c)
\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
\(A=n^n+5n^2-11n+5=n^n-n+5\left(n-1\right)^2\)
\(\text{Do }5\left(n-1\right)^2\text{ chia hết cho }\left(n-1\right)^2\text{ nên ta cần chứng minh }n^n-n\text{ chia hết cho }\left(n-1\right)^2\)
\(\text{Hay }\left(n+1\right)^{n+1}-\left(n+1\right)\text{ chia hết cho }n^2\left(n\ge1\right)\)
\(B=\left(n+1\right)^{n+1}-\left(n+1\right)=\left(n+1\right).\left(n+1\right)^n-\left(n+1\right)=\left(n+1\right)\left[\left(n+1\right)^n-1\right]\)
\(=\left(n+1\right)\left(n+1-1\right)\left[\left(n+1\right)^{n-1}+\left(n+1\right)^{n-2}+...+\left(n+1\right)^1+1\right]\)
\(=\left(n+1\right).n.\left[\left(n+1\right)^{n-1}+\left(n+1\right)^{n-2}+...+\left(n+1\right)+1\right]\)
\(\text{Để chứng minh }B\text{ chia hết cho }n^2\text{ thì ta chứng minh }\left[\left(n+1\right)^{n-1}+...+1\right]\text{ chia hết cho }n\)
\(\left(n+1\right)^{n-1}+...+1=\left(n+1\right)^{n-1}+...+\left(n+1\right)^0\text{ có }n\text{ số hạng}\)
\(\text{Ta thấy: }\left(n+1\right)^k=a_k.n^k+a_{k-1}.n^{k-1}+...+a_1.n^1+1\text{ với mọi số tự nhiên }k\)
\(\Rightarrow\left(n+1\right)^k\text{ chia }\left(n-1\right)\text{ luôn dư 1.}\)
\(\Rightarrow\left(n+1\right)^{n-1};\left(n+1\right)^{n-2};....\left(n+1\right)^1;\left(n+1\right)^0\text{ (n số) chia n đều dư 1.}\)
\(\Rightarrow\left(n+1\right)^{n-1}+...+\left(n+1\right)+1\text{ chia hết cho }n\)
\(\Rightarrow B=\left(n+1\right)n\left[\left(n+1\right)^{n-1}+...+1\right]\text{ chia hết cho }n^2\)
\(\Rightarrow\left(n+1\right)^{n+1}-\left(n+1\right)\text{ chia hết cho }n^2\text{ với mọi }n\ge1\)
\(n^2-n\text{ chia hết cho }\left(n-1\right)^2\text{ với mọi }n\in N;\text{ }n\ge2\)
\(\text{ }\)\(\Rightarrow n^2-n+5\left(n-1\right)^2\text{ chia hết cho }\left(n-1\right)^2\text{ với }n\in N;n\ge2\text{ (đpcm)}\)