cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tạiI, kẻ IE vuông góc BC tại E.
a, chứng minh tam giác ABI= tam giác EBI từ đó so sánh AI và IC.
b, gọi F là giao điểm của BA và EI. chứng minh BI vuông góc IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc CF
=>BD//AH
=>AH vuông góc AE
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=EB
b: AB<AC
=>góc C<góc B
=>góc C<45 độ
=>gócEDC>45 độ
=>góc C<góc EDC
=>ED<EC
=>DA<AM<DM
a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó:ΔABE=ΔIBE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó;ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại E
c: Xét ΔBMC có BA/AM=BI/IC
nên AI//MC
a) Xét ΔABI vuông tại A và ΔEBI vuông tại E có
BI chung
\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABI=ΔEBI(Cạnh huyền-góc nhọn)
Suy ra: AI=EI(hai cạnh tương ứng)
a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó:ΔABI=ΔHBI
b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có
IA=IH
\(\widehat{AIK}=\widehat{HIC}\)
Do đó; ΔAIK=ΔHIC
Suy ra: AK=HC
mà BA=BH
nên BK=BC
=>ΔBKC cân tại B
a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó: ΔBAE=ΔBIE
b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEM}=\widehat{IEC}\)
Do đó: ΔAEM=ΔIEC
Suy ra: EM=EC
hay ΔEMC cân tại M
c: Xét ΔBMC có
BA/AM=BI/IC
nên AI//MC
â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
góc ABI=góc EBI
=>ΔBAI=ΔBEI
=>IA=IE
mà IE<IC
nên IA<IC
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc B chung
=>ΔBEF=ΔBAC
=>BF=BC
mà BI là phân giác
nên BI vuông góc CF
Làm thế nào để IE<IC vậy