Bài 1. Giải phương trình
b) (x - 3)(x - 5) = x ^ 2 - 1
c) x ^ 3 + x ^ 3 - x ^ 2 - 1 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)
<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)
<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)
<=> -3 + (-5x) + (-15) = 2x - 6
<=> -5x -2x = 15 - 6 + 3
<=> -7x = 12
<=> x = \(\dfrac{-12}{7}\)
Vậy ........
b. \(\left|x+5\right|=2x-1\)
Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5
Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)
TH1: Nếu x \(\ge\) -5
<=> x + 5 = 2x - 1
<=> x - 2x = -1 - 5
<=> -x = -6
<=> x = 6
TH2: Nếu x < -5
<=> -(x + 5) = 2x - 1
<=> -x - 5 = 2x - 1
<=> -5 + 1 = 2x + x
<=> -4 = 3x
<=> x = \(\dfrac{-4}{3}\)
Vậy .........
c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)
b) Ta có: \(3+\left(x-5\right)=2\left(3x-2\right)\)
\(\Leftrightarrow3+x-5=6x-4\)
\(\Leftrightarrow x-2-6x+4=0\)
\(\Leftrightarrow-5x+2=0\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\dfrac{2}{5}\)
Vậy: \(S=\left\{\dfrac{2}{5}\right\}\)
c) Ta có: \(2\left(x-0.5\right)+3=0.25\left(4x-1\right)\)
\(\Leftrightarrow2x-1+3=x-\dfrac{1}{4}\)
\(\Leftrightarrow2x+2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x+\dfrac{9}{4}=0\)
\(\Leftrightarrow x=-\dfrac{9}{4}\)
Vậy: \(S=\left\{-\dfrac{9}{4}\right\}\)
d) Ta có: \(2\left(x-\dfrac{1}{4}\right)-4=-6\left(-\dfrac{1}{3}x+0.5\right)+2\)
\(\Leftrightarrow2x-\dfrac{1}{2}-4=2x-3+2\)
\(\Leftrightarrow2x-\dfrac{9}{2}=2x-1\)
\(\Leftrightarrow2x-2x=-1+\dfrac{9}{2}\)
\(\Leftrightarrow0x=\dfrac{7}{2}\)(vô lý)
Vậy: \(S=\varnothing\)
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
a/ 4x + 20 = 0
⇔4x = -20
⇔x = -5
Vậy phương trình có tập nghiệm S = {-5}
b/ 2x – 3 = 3(x – 1) + x + 2
⇔ 2x-3 = 3x -3+x+2
⇔2x – 3x = -3+2+3
⇔-2x = 2
⇔x = -1
Vậy phương trình có tập nghiệm S = {-1}
câu tiếp theo
a/ (3x – 2)(4x + 5) = 0
3x – 2 = 0 hoặc 4x + 5 = 0
Vậy phương trình có tập nghiệm S= {-5/4,3/2}
b/ 2x(x – 3) – 5(x – 3) = 0
=> (x – 3)(2x -5) = 0
=> x – 3 = 0 hoặc 2x – 5 = 0
* x – 3 = 0 => x = 3
* 2x – 5 = 0 => x = 5/2
Vậy phương trình có tập nghiệm S = {0, 5/2}
Bài `1:`
`b)`
`(x-3).(x-5)=x^{2}-1`
`<=>x^{2}-5x-3x+15=x^{2}-1`
`<=>x^{2}-8x+15-x^{2}+1=0`
`<=>-8x+16=0`
`<=>-8x=-16`
`<=>x=2`
Vậy `S={2}`
`c)`
`x^{3}+x^{3}-x^{2}-1=0`
`<=>2x^{3}-x^{2}-1=0`
`<=>2x^{3}-2x^{2}+x^{2}-1=0`
`<=>2x^{2}.(x-1)+(x-1).(x+1)=0`
`<=>(x-1).(2x^{2}+x+1)=0`
Ta có:
`2x^{2}+x+1`
`=2.(x^{2}+1/2x+ 1/2)`
`=2.[x^{2}+2.x. 1/4+(1/4)^{2}+7/16]`
`=2.[(x+1/4)^{2}+7/16]`
`=2.(x+1/4)^{2}+7/8`
Ta có:
`(x+1/4)^{2}\ge0AAx`
`=>2.(x+1/4)^{2}\ge0AAx`
`=>2(x+1/4)^{2}+7/8>0AAx`
`=>x-1=0`
`<=>x=1`
Vậy `S={1}`
`@Nae`
Ôi cảm ơn bạn nhiều nhiều lắm, cứ tưởng là ko có ai trả lời T^T