Cho tam giác ABC vuông tại A , tia phân giác của góc B cắt AC tại D. Chứng minh rằng: BC - BA > DC - DA |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
Suy ra: BA=BK
b: Ta có: ΔBAD=ΔBKD
nên DA=DK
mà DK<DC
nên DA<DC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc BC
c: DA=DE
mà DE<DC
nên DA<DC
a) cho ac rùi tính ac làm j nữa z bạn
b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có
bd chung
góc abd = góc ebd ( bd là tia phân giác của góc abc )
=> tam giác abd=tam giac ebd ( ch-gn)