K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2023

2.

a.

\(P=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2}{x-5}=\dfrac{1}{x+5}\)

b.

\(P=-3\Rightarrow\dfrac{1}{x+5}=-3\Rightarrow x+5=-\dfrac{1}{3}\)

\(\Rightarrow x=-\dfrac{16}{3}\)

Thay vào bấm máy ta được \(Q=529\)

3.

a. \(P=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)

b.

\(P=4\Rightarrow\dfrac{4}{x-3}=4\Rightarrow x-3=1\)

\(\Rightarrow x=4\)

26 tháng 8 2019

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

26 tháng 8 2019

mik chịu thui xin lỗi bạn

2 tháng 10 2021

\(2,\\ 1,=20\sqrt{3}+20\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=40\sqrt{3}+\sqrt{3}=41\sqrt{3}\\ 2,A=\dfrac{2\sqrt{x}-9-x+9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{2\sqrt{x}-x+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ c,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\left(4>0\right)\\ \Leftrightarrow x< 9\Leftrightarrow0\le x< 9\)

 

2 tháng 10 2021

\(3,\\ 1,A=\sqrt{2}-1-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=\sqrt{2}-1-\sqrt{2}=-1\\ 2,\\ a,P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\left(x\ge0;x\ne4\right)\\ P=\dfrac{4\left(\sqrt{x}+2\right)}{4\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ b,P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1

1 tháng 1 2024

1)

\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)

\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)

\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)

\(\Leftrightarrow x=2015\)

Vậy \(S=\left\{2015\right\}\)

 

28 tháng 3 2020

* lak mũ nha

Đây là bài tìm x mà bạn