K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

bạn phân tích thì ra

2 tháng 4 2017

Trừ 1 đi thì ta chỉ cần chứng minh từ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)                                                                                                         \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)                                                                                                                                                       \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)      ....... cứ nhu vậy cho đến \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

 Vậy S < 2

NV
11 tháng 4 2019

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-2.\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=P-1\)

\(\Rightarrow\left(S-P\right)^{2018}=\left(P-1-P\right)^{2018}=\left(-1\right)^{2018}=1\)

29 tháng 11 2015

S = \(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)

2.S = \(2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{1992}{2^{1990}}\)

=> 2.S - S = \(2+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}\)

=> S = \(2-\frac{1992}{2^{1991}}+\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\right)\)

Đặt A = \(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\)

=>2.A = 2 + \(\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{1989}}\)

=> 2.A - A = 2 - \(\frac{1}{2^{1990}}\)=A

Vậy S = \(4-\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}<4\)

 

 

30 tháng 11 2015

tic cho tuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

29 tháng 3 2017

sửa đề : S < 1

\(s< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+..................+\frac{1}{9.10}\)

\(\Leftrightarrow S< 1-\frac{1}{10}\)

vậy S < 1

19 tháng 1 2019

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)

20 tháng 1 2019

bài tớ sai rồi -_-' chưa lại hộ

\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

7 tháng 4 2017

\(S=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{50^2}\right)\)

Xét \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< \frac{1}{2}-\frac{1}{50}< \frac{1}{2}\)

\(=>A< \frac{1}{2}\)

=>\(S=\frac{1}{4}+A< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy S<3/4