cho tam giác ABC cân tại A kẻ từ tia phân giác AD(D thuộc BC) của góc BAC;chưng minh rằng AD là đường trung tuyến của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E F B C G D
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
A B D E F C G
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
ta có:\(AD\)là tia phân giác của góc \(\widehat{BAC}\)
Mà \(\Delta ABC\)cân tại A
\(\Rightarrow\)\(AD\)là trung tuyến của\(\widehat{BAC}\)(trong \(\Delta\)cânđường phân giác đòng thời à đường trung tuyến ứng vs cạch đáy)
có thể ghi gọn hơn chỉ giải thik cho hỉu thui
a: Xét ΔABD vuông tại B và ΔAED vuông tại E co
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AB = AC (gt)
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (do AD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)
\(\Rightarrow BD=CD\) (hai cạnh tương ứng)
\(\Rightarrow D\) là trung điểm của BC
\(\Rightarrow AD\) là đường trung tuyến của \(\Delta ABC\)
Ta co: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường trung tuyến của ΔABC