K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

Gọi số ban đầu là \(\overline{ab}\)

Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36

=>5a+2b=29 và -9a+9b=36

=>a=3 và b=7

12 tháng 2 2022

a, Thay m = 2 ta được \(\left\{{}\begin{matrix}2x+y=1\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

b, \(\Leftrightarrow\left\{{}\begin{matrix}3x=3m-3\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)

Ta có : \(x^2+y^2=m^2-2m+1+m^2-6m+9=2m^2-8m+10\)

\(=2\left(m^2-4m+4-4\right)+10=2\left(m-2\right)^2+2\ge2\forall m\)

Dấu''='' xảy ra khi m =2 

Vậy ...

29 tháng 12 2022

Bài 1:

- Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.

- Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)

- Với \(m=1\). Thế vào (1) ta được:

\(0x=0\) (phương trình vô số nghiệm).

\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)

- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)

Với \(m=-1\). Thế vào (1) ta được:

\(0x=-4\) (phương trình vô nghiệm)

Vậy với \(m=-1\) thì hệ đã cho vô nghiệm

Với \(m\ne\pm1,0\).

\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)

\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)

Thay vào (2) ta được:

\(\dfrac{3m+1}{m+1}+my=m+1\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)

\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)

\(\Leftrightarrow my\left(m+1\right)=m^2-m\)

\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)

\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)

Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).

 

29 tháng 12 2022

Bài 2:

\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)

\(\Rightarrow4\left(m+1\right)y-y=-6\)

\(\Leftrightarrow\left(4m+3\right)y=-6\)

\(\Rightarrow y=-\dfrac{6}{4m+3}\)

Để y nguyên thì:

\(6⋮\left(4m+3\right)\)

\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)

\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

4m+31236-1-2-3-6
m-1/2 (loại)

-1/4 (loại)

0 (nhận)3/4 (loại)-1 (nhận)-5/4 (loại)-3/2 (loại)-9/4 (loại)

\(\Rightarrow m\in\left\{0;-1\right\}\)

Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)

Thay vào (1) ta được:

\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)

Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.

Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.

Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)

Thay \(y=6\) vào (2) ta được:

\(4x-6=-2\)

\(\Leftrightarrow x=1\)

Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.

Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:
Từ PT$(1)\Rightarrow x=m+1-my$. Thay vô PT(2):

$m(m+1-my)+y=3m-1$

$\Leftrightarrow y(1-m^2)+m^2+m=3m-1$

$\Leftrightarrow y(1-m^2)=-m^2+2m-1(*)$

Để hpt có nghiệm $(x,y)$ duy nhất thì pt $(*)$ cũng phải có nghiệm $y$ duy nhất 

Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow m\neq \pm 1$
Khi đó: $y=\frac{-m^2+2m-1}{1-m^2}=\frac{-(m-1)^2}{-(m-1)(m+1)}=\frac{m-1}{m+1}$

$x=m+1-my=m+1-\frac{m(m-1)}{m+1}=\frac{3m+1}{m+1}$

Có:

$x+y=\frac{m-1}{m+1}+\frac{3m+1}{m+1}=\frac{4m}{m+1}<0$

$\Leftrightarrow -1< m< 0$

Kết hợp với đk $m\neq \pm 1$ suy ra $-1< m< 0$ thì thỏa đề.

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên

Ta có: \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x=m+3\\5x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{17}\\y=5x-1=\dfrac{5m+15}{17}-\dfrac{17}{17}=\dfrac{5m-2}{17}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất sao cho x<0 và y>0 thì 

\(\left\{{}\begin{matrix}\dfrac{m+3}{17}< 0\\\dfrac{5m-2}{17}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+3< 0\\5m-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\m>\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)