a)Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
b)Tìm 3 số có tổng bằng 210, biết rằng \(\frac{6}{7}\)số thứ nhất bằng \(\frac{9}{11}\)số thứ 2 và \(\frac{9}{11}\)số thứ 2 bằng \(\frac{2}{3}\)số thứ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Giải :
Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3
a chia cho 4 dư 2 => a + 2 \(⋮\)4
a chia cho 5 dư 3 => a + 2 \(⋮\)5
a chia cho 6 dư 4 => a + 2 \(⋮\)6
=> a + 2 \(\in\) BC( 3,4,5,6 )
3 = 3
4 = 22
5 = 5
6 = 2 .3
BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60
BC( 3,4,5,6 ) = { 0;60;120;180;... }
Mà : a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = 60
=> a = 60 - 2 = 58
Vậy số tự nhiên cần tìm là 58
Bài 2 : Giải :
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)
\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
Vậy : A = 2
Bài 3: Giải :
Quy đồng tử số , ta có :
\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)
=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .
Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .
Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .
Tổng số phần bằng nhau là :
21 + 22 + 27 = 70
Số thứ nhất là :
210 : 70 . 21 = 63
Số thứ hai là :
210 : 70 . 22 = 66
Số thứ ba là :
210 - 63 - 66 = 81
Đáp số : ...
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số cần tìm là x
Ta có :
x : 11 dư 6 => x - 6 chia hết cho 11 => x - 6 + 33 = x + 27 chia hết cho 11
x : 4 dư 1 => x - 1 chia hết cho 4 => x - 1 + 28 = x + 27 chia hết cho 4
x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
Vì (1) , ( 2), (3) => x + 27 chia hết cho các số 11,4,19 => x + 27 = BCNN ( 4, 11 ,19 ) = 836
Số tự nhiên cần tìm là :
836 - 27 = 809
Đáp số : 809
gọi số cần là x:
có x : 11 dư 6 = > x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
có x 4 dư 1 => x - 1 chia hết cho 4 => x - 1 + 28 = x + 27 chia hết cho 4
có x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
x + 27 chia hết cho các số 4;11;19 => x + 27 = BCNN (4;11;19) = 836
vậy x = 836 - 27 = 809
tick nha
Câu hỏi của Lê Hải Ngọc - Toán lớp 6 - Học toán với OnlineMath
Gọi số tự nhiên cần tìm là a.
Ta có: a : 11 dư 6 => a - 6 + 33 = a + 27 \(⋮\)11 (Vì 33 \(⋮\)11.) (1)
Ta có: a : 4 dư 1 => a - 1 + 28 = a + 27 \(⋮\)4 (Vì 28 \(⋮\)4.) (2)
Ta có: a : 19 dư 11 => a - 11 + 38 = a + 27 \(⋮\)19 (Vì 38 \(⋮\)19) (3)
Từ (1), (2) và (3) => a + 27 \(⋮\)4; 11; 19 => a + 27 = BCNN (4; 11; 19) = 836
=> a = 836 - 27 = 809
Vậy số tự nhiên cần tìm là 809.
~~~
Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
Ai làm xong đầu tiên minh k cho