Cho tam giác ABC vuông góc ở A có cạnh AB = 6cm , cạnh AC = 8cm
Tính cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a, Theo định lí Pytago ta đc
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AE là pg nên
\(\dfrac{AB}{AC}=\dfrac{BE}{CE}\Rightarrow\dfrac{CE}{AC}=\dfrac{BE}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{CE}{AC}=\dfrac{BE}{AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow CE=\dfrac{40}{7}cm;BE=\dfrac{30}{7}cm\)
b, Vì EF // BC Theo hệ quả Ta lét \(\dfrac{EC}{BC}=\dfrac{EF}{AB}\Rightarrow EF=\dfrac{EC.AB}{BC}=\dfrac{24}{7}cm\)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Vì AD là phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}CD\)
Ta có: \(BD+CD=BC\Rightarrow\dfrac{3}{4}CD+CD=10\Rightarrow\dfrac{7}{4}CD=10\Rightarrow CD=\dfrac{40}{7}\)
\(\Rightarrow BD=\dfrac{3}{4}.\dfrac{40}{7}=\dfrac{30}{7}\)
Cạnh BC là:
(6 + 8) : 2 = 7 cm
ĐS:
tk nha!
bạn lên lớp 7 sẽ được học thui.
áp dụng định lý Py-ta-go nha bạn
đáp số:BC=10cm