K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta có:

1 phần 2 mũ 2 tức là 1 phần 2 * 1 phần 2 = 1phần 4

1 phần 2mũ  3 tức là 1 phần 2* 1phần 2 * 1 phần 2 = 1 phần 8

1 phần 2mũ 4 tức là 1 phần 2* 1phần 2 * 1 phần 2  =1phần18

1 phần 2mũ 5 tức là 1 phần 2* 1phần 2 * 1 phần 2 *1 phần 2*1 phần 2  =1phần 36

 Ta thấy mẫu  số cứ gấp lên 2 lần

Mẫu số của phân số cuối là :

2*2*2*...*2 {có 2005 số 2 } = anh tính hộ em thì em thay bằng x

gọi tổng của biểu thức là A

Ta có

A =1 phàn 2 +1phần 4 +1 phần 8 +...+x

A *2=1 + 1phần 2 +1phần 4 +...+ x/2

A*2 -A=1 + 1phần 2 +1phần 4 +...+ x/2 - 1 phàn 2 +1phần 4 +1 phần 8 +...+x

A= 1 - x

A= [x-1] phần x

                            Đ/s x-1 phần x               

31 tháng 3 2017

Mk chỉ bik viết lại đề bài của bn cho mn hiểu thui,thông cảm mk cx lớp 6 nhg k giải đc

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2005}}\) bằng mấy???

22 tháng 3 2018

Đặt  A  =\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)    

Ta có \(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

           \(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

     => \(2A=3A-A=3-\frac{1}{3^{2005}}\)

   => \(A-\frac{3-\frac{1}{3^{2005}}}{2}\)

30 tháng 1 2016

làm ơn tách ra giùm mk

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và Bb. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyênd. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​...
Đọc tiếp

1​/a. cho 2 số :A = 10 mũ​ 2004 + 1 phần​ 10 mũ​ 2005 +1.       B= 10 mũ​ 2005 + 1 phần​ 10 mũ​ 2006 + 1.              So sánh​ A và B

b. chứng​ minh A= 1+ 1 phần​ 2 mũ​ 2 +1 phần​ 3 mũ​ 2 + 1 phần​ 4 mũ​ 2 +...........+ 1 phần​ 100 mũ 2 < 2

c. tìm​ số​ nguyên​ x đ​ể​ phân​ số​ 3x+7 phần​ x-1 là​ số​ nguyên

d. tìm​ số​ nguyê​n đ​ể​ phân​ số​ n-2 phần​ n+5 có​ giá​ trị​ nguyên

Bài 2:

a. tính​ tổng​ 20 số​ hạng​ đ​ầu​ tiên​ của​ dãy​ sau : 1 phần​ 1.2 , 1 phần​ 2.3 , 1 phần 3.4 , ...

b. tính​ tổng​ 5 số​ hạng đ​ầu​ tiên​ của​ dãy​ số​ sau : 5 phần​ 6 , 5 phần​ 66 , 5 phần​ 176 , 5 phần 336 ,.......

c. cho biểu​ thức​ : A = 5 mũ​ 2 phần​ 1.6 + 5 mũ​ 2 phần​ 6.11 +...+ 5 mũ​ 2 phần​ 26.31.       Chứng​ tỏ A > 1

2
4 tháng 5 2018
1/a, -Ta có: $B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$ -Vậy: B
4 tháng 5 2018

1/a,

-Ta có: 

$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$

-Vậy: B<A

b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$

$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$

$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$

$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$

$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$

30 tháng 1 2016

nguyên một hàng mk đọc ko hỉu????????????

không hiểu......>><

A<1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9

A>1/2-1/3+1/3-1/4+...+1/9-1/10=1/2-1/10=2/5

=>2/5<A<8/9

14 tháng 3 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1-\frac{1}{50}\)

\(\Rightarrow A< \frac{49}{50}\)

Mà \(\frac{49}{50}< 1\)

\(\Rightarrow A< 1\)

Vậy A<1