\(3-3^2+3^3+.....................+3^{2003}-3^{2004}\)
Giúp mình nhé ai nhanh nhất mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt B=99/1+99/2+...+1/99
=1+(98/2+1)+(97/3+1)+...+(1/99+1)
=100/100+100/2+...+100/99
=100.(1/2+1/3+...+1/100)
=>A=(1/2+1/3+...+1/100):[100.(1/2+1/3+...+1/100)]
A=1:100=1/100
hok tốt nha
a)S=1-2+3-4+...+2005-2006
S=(1-2)+(3-4)+...+(2005-2006)
S=(-1)+(-1)+...+(-1) Dãy S có 2016 thì có 1008 cặp
S=(-1)x1008
S=-1008
b)Tương tự
c)S=1+2-3-4+5+6-7-8+...+2001+2002-2003-2004
S=(1+2-3-4)+(5+6-7-8)+...+(2001+2002-2003-2004)
S=(-4)+(-4)+...+(-4) Dãy S có 2004 số => có 1002
S=(-4)x1002
S=-4008
=1/2x2/3x/3/4/.................x2003/2004
= 1x2x3x................x2003
___________________
2x3x4x................x 2004
=1/2004
2E=1+\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2003}}\)
2E-E=1-\(\frac{1}{2^{2004}}\)
E=\(\frac{1}{2^{2004}}\)
Ủng hộ mk nha
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Bạn viết thêm 1 vài số nữa đi.Qui luật chưa rõ ràng lắm.
hơi dễ zùi đó