K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: sin B=AC/BC

=>15/BC=sin60

=>BC=10 căn 3(cm)

=>AB=5căn 3(cm)

góc ABD=60/2=30 độ

Xét ΔABD vuôg tại A có tan ABD=AD/AB

=>AD/5căn 3=tan30=căn 3/3

=>AD=5(cm)

=>BD=10cm

=>DC=15-5=10cm

b: AE/AD=1/3

=>AE=1/3*5=5/3

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

1 tháng 3 2023

mk mới học lớp 8 thôi ko thể làm theo sin tan

29 tháng 7 2017

ahihi DồKết quả hình ảnh cho ban làm rớt nà     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>DE/8=3/7

hay DE=24/7(cm)

28 tháng 6 2019

A B C D E F I 1 2 1

Cm: a) Xét t/giác ADB và t/giác EDB

có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)

      BD : chung

    \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ADB = t/giác EDB (ch - gn)

=> AB = BE ; AD = ED (các cặp cạnh t/ứng)

+) AD = ED => D thuộc đường trung trực của AE

+) AB = BE => B thuộc đường trung trực của AE

mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE 

b) Xét t/giác ADF và t/giác EDC

có:  \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)

       AD = DE (cmt)

   \(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DF = DC (2 cạnh t/ứng)

c) Ta có: AD < DF (cgv < ch)

Mà DF = DC (cmt)

=> AD < DC 

d) Xét t/giác ABC có AB > AC 

=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)

=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)

hay \(\widehat{ICB}>\widehat{B_2}\)

=> BI > IC (quan hệ giữa góc và cạnh đối diện)

a) Xét tam giác vuông BED và tam giác vuông BAD ta có :

ABD = EBD ( BD là pg ABC )

BD chung

=> Tam giác BED = tam giác BAD ( ch-gn)

=  >AD = DE( tg ứng)

b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :

AD = DE (cmt)

ADF = EDC ( đối đỉnh)

=> Tam giác AFD = tam giác EDC ( cgv-gn)

=> DF = DC (dpcm)

c) Xét tam giác vuông DEC có 

DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)

Mà AD = DE (cmt)

=> AD < DC

d) chịu

9 tháng 8 2020

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

9 tháng 8 2020

học tốtimage