cho tam giác ABC vuông tại A có góc B=60 độ AC=15cm kẻ phân giác BD của góc B
a) Tính AD,DC,BD
b) E thuộc AB sao cho AE/AD=1/3. c/m DE//BC và DE là p/g góc ngoài góc ADB
giúp mk nhanh với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
Cm: a) Xét t/giác ADB và t/giác EDB
có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)
BD : chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ADB = t/giác EDB (ch - gn)
=> AB = BE ; AD = ED (các cặp cạnh t/ứng)
+) AD = ED => D thuộc đường trung trực của AE
+) AB = BE => B thuộc đường trung trực của AE
mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE
b) Xét t/giác ADF và t/giác EDC
có: \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)
AD = DE (cmt)
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DF = DC (2 cạnh t/ứng)
c) Ta có: AD < DF (cgv < ch)
Mà DF = DC (cmt)
=> AD < DC
d) Xét t/giác ABC có AB > AC
=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)
=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)
hay \(\widehat{ICB}>\widehat{B_2}\)
=> BI > IC (quan hệ giữa góc và cạnh đối diện)
a) Xét tam giác vuông BED và tam giác vuông BAD ta có :
ABD = EBD ( BD là pg ABC )
BD chung
=> Tam giác BED = tam giác BAD ( ch-gn)
= >AD = DE( tg ứng)
b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :
AD = DE (cmt)
ADF = EDC ( đối đỉnh)
=> Tam giác AFD = tam giác EDC ( cgv-gn)
=> DF = DC (dpcm)
c) Xét tam giác vuông DEC có
DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)
Mà AD = DE (cmt)
=> AD < DC
d) chịu
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
a: sin B=AC/BC
=>15/BC=sin60
=>BC=10 căn 3(cm)
=>AB=5căn 3(cm)
góc ABD=60/2=30 độ
Xét ΔABD vuôg tại A có tan ABD=AD/AB
=>AD/5căn 3=tan30=căn 3/3
=>AD=5(cm)
=>BD=10cm
=>DC=15-5=10cm
b: AE/AD=1/3
=>AE=1/3*5=5/3
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
mk mới học lớp 8 thôi ko thể làm theo sin tan