K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên = EI = DI ( = ½ AM) = Tam giác EID cân tại I Lại có các tam giác AEI và ADI cân tại I nên: ^EIM = 2^EAI và ^MID = 2^IAD = ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ (Vì AD là đường cao nên là phan giác ^A) Tam giác EID cân lại có ^EID = 60 độ nên đều Tương tự tam giác IFD đều nên: EI = IF = FD = DE = Tứ giác DEIF là hình thoi b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. = HO//IK và HM//IK = Tia HO và HM trùng nhau hay M, H, O thẳng hàng = MH, ID, EF đồng quy tại O a) Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên 
=> EI = DI ( = ½ AM) 
=> Tam giác EID cân tại I 
Lại có các tam giác AEI và ADI cân tại I nên: 
^EIM = 2^EAI và ^MID = 2^IAD 
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ 
(Vì AD là đường cao nên là phan giác ^A) 
Tam giác EID cân lại có ^EID = 60 độ nên đều 
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi 
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. 
=> HO//IK và HM//IK 
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O 

29 tháng 3 2016

Thường thì nhg thằng xấu như ma sẽ tự nhận miink là hotboys

5 tháng 10 2017

Gọi H là trực tâm của tam giác đều ABC,Lấy điểm M bất kì thuộc cạnh BC,Gọi E F theo thứ tự là hình chiếu của M trên AB AC,Goi I là trung điểm của AM,Xác định dạng của tứ giác DEIF,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

a) Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên 
=> EI = DI ( = ½ AM) 
=> Tam giác EID cân tại I 
Lại có các tam giác AEI và ADI cân tại I nên: 
^EIM = 2^EAI và ^MID = 2^IAD 
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ 
(Vì AD là đường cao nên là phan giác ^A) 
Tam giác EID cân lại có ^EID = 60 độ nên đều 
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi 
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. 
=> HO//IK và HM//IK 
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O 

13 tháng 11 2017

tam giác can

22 tháng 11 2016

  a) Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên 
=> EI = DI ( = ½ AM) 
=> Tam giác EID cân tại I 
Lại có các tam giác AEI và ADI cân tại I nên: 
^EIM = 2^EAI và ^MID = 2^IAD 
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ 
(Vì AD là đường cao nên là phan giác ^A) 
Tam giác EID cân lại có ^EID = 60 độ nên đều 
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi 
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. 
=> HO//IK và HM//IK 
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O 

12 tháng 10 2017

Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên 
=> EI = DI ( = ½ AM) 
=> Tam giác EID cân tại I 
Lại có các tam giác AEI và ADI cân tại I nên: 
^EIM = 2^EAI và ^MID = 2^IAD 
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ 
(Vì AD là đường cao nên là phan giác ^A) 
Tam giác EID cân lại có ^EID = 60 độ nên đều 
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi 
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID. 
=> HO//IK và HM//IK 
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O 

11 tháng 11 2017

Ban kia lam dung roi do

k tui nha

thanks