tính tổng gồm 11 thừa số sau:
A=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2010.2012}\right)\left(1+\frac{1}{2011.2013}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
= 4/1.3 x 9/2.4 x 16/3.5 x...x 10000/99.101
= 2.2/1.3 x 3.3/2.4 x 4.4/3.5 x..x 100.100/99.101
= (2.3.4. ... 100/1.2.3. .... 99) x (2.3.4. ... .100/3.4.5. ... .101)
= 100.2/101
=200/101
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)
\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(\Rightarrow A=\frac{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}\)
\(\Rightarrow A=\frac{100.2}{101}=\frac{200}{101}\)
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
Ta có
=\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{8.10}\right)\)
=\(\frac{4}{3}.\frac{9}{8}....\frac{81}{80}\)
=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{9.9}{8.10}\)
=\(\frac{2.3....9}{1.2....8}.\frac{2.3....9}{3.4....10}\)
=\(9.\frac{2}{10}\)
=\(\frac{9}{5}\)
\(S=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2016.2018}\right)\)
\(\Rightarrow S=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2016.2018+1}{2016.2018}\)
\(\Rightarrow S=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{2017^2}{2016.2018}\)
\(\Rightarrow S=\frac{\left(2.3.4.....2017\right)\left(2.3.4.....2017\right)}{\left(1.2.3.....2016\right)\left(3.4.5.....2018\right)}\)
\(\Rightarrow S=\frac{2017.2}{1.2018}=\frac{4034}{2018}=\frac{2017}{1009}\)
\(=\frac{4}{3}.\frac{9}{8}...\frac{4060225}{4060224}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2015.2015}{2014.2016}\)
\(=\frac{2.2.3.3...2015.2015}{1.3.2.4...2014.2016}\)
\(=\frac{2.3...2015}{1.2...2014}.\frac{2.3...2015}{3.4...2016}\)
\(=2015.\frac{2}{2016}\)
\(=2015.\frac{1}{1008}\)
\(=\frac{2015}{1008}\)