K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Gọi x (dãy) là số dãy ghế ban đầu của phòng họp.

Điều kiện: x ∈N*

Khi đó số ghế ngồi trong một dãy là: 360/x (ghế)

số dãy ghế sau khi tăng là x + 1 (dãy)

số ghế ngồi trong một dãy sau khi tăng là:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo đề bài, ta có phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

⇔ 400x – 360(x + 1) = x(x + 1)

⇔ 400x – 360x – 360 = x 2  + x ⇔  x 2  – 39x + 360 = 0

∆ = - 39 2  – 4.1.360 = 1521 – 1440 = 81 > 0

∆ = 81 = 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cả hai giá trị của x đều thỏa mãn điều kiện bài toán.

Vậy bình thường trong phòng có 15 hoặc 24 dãy ghế.

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

2 tháng 6 2021

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

2 tháng 6 2021

12 hàng

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.

9 tháng 5 2018

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)

\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)

\(\Delta'=\left(-36\right)^2-720=576\)

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế. 

13 tháng 12 2017

Câu hỏi tương tự nha bạn

15 tháng 2 2018

Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]

=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2

Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)

Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)

=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a

=> 35a-70+2a\(^2\)-4a=35a

=> 2a\(^2\)-4a-70=0

=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp

Trường hợp 1 : a-1 = -6 => a = - 5 [loại]

Trường hợp 2 : a - 1 = 6 => a = 7

Còn đây bạn làm nốt tiếp

Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người

1 tháng 6 2015

 Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10

17 tháng 5 2021

em học lớp 5 nên ko bt đâu ạ

Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)

Lúc đầu mỗi dãy có 240xghế

Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế

=> (240x+1)(x+3)=315⇔240+720x+x+3=315

⇔x−72+720x=0⇔x2−72x+720x=0⇔x2−72x+720=0

Δ′=(−36)2−720=576

=> x1= 60 (Loại), x2=12 (thỏa mãn)

Vậy trong phòng họp lúc đầu có 12 dãy ghế.