Cho tam giác ABC có AB < AC, lấy điểm E trên cạnh CA sao cho CE=BA, các đường trung trực của đoạn thẳng BE và CA cắt nhau tại I.
a. Chứng minh: tam giác AIB= tam giác CIE
b. Chứng minh: AI là tia phân giác của góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác AIB và tam giác CIE, có:
+ AB = CE (gt)
+ IB = IC (I thuộc trung trực của BE)
+ AI = CI (I thuộc trung trực của AC)
=> Tam giác AIB = Tam giác CIE (c.c.c)
b. Ta có: Tam giác AIB = Tam giác CIE ( CMT)
=> Góc IAB = Góc ICE ( 2 góc tương ứng ) {1}
Lại có: AI = IC ( CMT )
=> Tam giác AIC cân tại I ( Định nghĩa tam giác cân )
=> Góc IAC = Góc ACI ( Tính chất tam giác cân ) {2}
Từ {1} và {2} => Góc IAB = Góc IAC
Hay AI là phân giác của góc BAC
Có I thuộc đường trung trực của đt BE
=> IE=IB
Có I thuộc đường trung trực của AC
=> IA=IC
Tam giác ABI=Tam giác CEI (tự chứng minh nhé)
=> góc BAI= góc ECI
Có IA=IC=> Tam giác IAC cân tại I=> góc IAC= góc ICA
=> góc BAI= góc IAC
=> AI là tia phân giác