So sánh A và B:
A= (7^2010+1)/(7^2011-1) và B=(7^2011+1)/(7^2012-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
7A=7*(7^2010+1)/7^2011-1=7^2011+7/7^2011-1=(7^2011-1)+8/7^2011-1=1+8/7^2011-1
7B=7*(7^2011+1)/7^2012-1=7^2012+7/7^2012-1=(7^2012-1)+8/7^2012-1=1+8/7^2012-1
Vì 8/7^2011-1>8/7^2012-1 nên 1+8/7^2011-1>1+8/7^2012-1 hay A>B
Vậy: A>B
ta có:\(7A=\frac{7\left(7^{2010}+1\right)}{7^{2011}-1}=\frac{7^{2011}+7}{7^{2011}-1}=\frac{7^{2011}-1+8}{7^{2011}-1}=\frac{7^{2011}-1}{7^{2011}-1}+\frac{8}{7^{2011}-1}=1+\frac{8}{7^{2011}-1}\)
\(7B=\frac{7\left(7^{2011}+1\right)}{7^{2012}-1}=\frac{7^{2012}+7}{7^{2012}-1}=\frac{7^{2012}-1+8}{7^{2012}-1}=\frac{7^{2012}-1}{7^{2012}-1}+\frac{8}{7^{2012}-1}=1+\frac{8}{7^{2012}-1}\)
vì 72011-1<72012-1
\(\Rightarrow\frac{8}{7^{2011}-1}>\frac{8}{7^{2012}-1}\)
=>A>B
Ta có:2012/2010=1+1/2011+1/2012 (1)
Thay (1) vào A, ta có:
2010/2011+2011/2012+1+1/2011+1/2012
= (2010/2011+1/2011) + 1+ (2011/2012+1/2012)
=1+1+1=3=51/17
suy ra A>51/17
Ta có B=1/3+1/4+...+1/17(có 15 sh)
B=(1/17+1/3).15:2
B=50/17(2)
Từ (1) và (2)=>A>B
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)