Cho tg nhọn ABC hai đg BD và CE
a, Cm: AE. AB = AD. AC
b, cm: tg ADE ~ tg ABC
c, biết A = 60 độ . SABC = 240 cm2 . Tính diện tích ADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔADE đồng dạng ΔEBK(câu c)
=>\(\dfrac{EK}{AE}=\dfrac{BE}{ED}\)(2 cặp cạnh tương ứng đồng dạng) (1)
Vì ΔABK đồng dạng ΔMCK(câu a)
=> góc BAE= góc EMD
Xét ΔABE và ΔMDE, có:
+ góc AEB=góc DEM(đối đỉnh)
+ góc BAE=góc EMD(cmt)
=>ΔABE ~ ΔMDE(g.g)
=>\(\dfrac{AE}{EM}=\dfrac{BE}{ED}\) (2)
Từ (1) và (2)=>\(\dfrac{EK}{AE}=\dfrac{AE}{EM}\)
=> AE.AE=EK.EM
=>\(^{AE^2}\)=EK.EM(đpcm)
tu ke hinh:
a, xet tam giac ADE va tam giac ADB co : AD chung
goc EAD = goc DAB do AD la pg cua goc A (gt)
AE = AB (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
b, tam giac ADE = tam giac ADB (Cau a)
=> DE = DB (dn) (1)
goc DEA = goc DBA (dn)
goc DEA + goc DEC = 180 (kb)
goc DBA + goc DBF = 180 (kb)
=> goc DEC = goc DBF (2)
xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)
(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)
=> CE = BF
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
C/m \(AE=\dfrac{AC}{2}\):
-Lấy M là trung điểm BC.
-△AEC vuông tại E có: EM là trung tuyến.
\(\Rightarrow AM=EM=\dfrac{1}{2}AC\)
\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).
\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!