tìm nghiệm của đa thức:
K(x)= 81x2 - 36x + 4
S(x)= x2 + x - 2
R(x)= 5x2 + 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
\(a,f\left(x\right)+g\left(x\right)=5x^2-2x+5+5x^2-6x-\dfrac{1}{3}\\ =10x^2-8x+\dfrac{14}{3}\\ b,f\left(x\right)-g\left(x\right)=5x^2-2x+5-5x^2+6x+\dfrac{1}{3}\\ =4x+\dfrac{16}{3}\\ c,f\left(x\right)-g\left(x\right)=4x+\dfrac{16}{3}=0\\ \Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
Giải:
a) \(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
Vậy ...
b) \(\left(2x-a\right)x^2-\left(2x-a\right)y\)
\(=\left(2x-a\right)\left(x^2-y\right)\)
\(=\left(2x-a\right)\left(x-\sqrt{y}\right)\left(x+\sqrt{y}\right)\)
Vậy ...
c) \(25a^2-c^2\)
\(=\left(5a-c\right)\left(5a+c\right)\)
Vậy ...
d) \(4-36x+81x^2\)
\(=2^2-2.2.9x+\left(9x\right)^2\)
\(=\left(2-9x\right)^2\)
Vậy ...
e) \(\left(x+7\right)2-\left(2x-9\right)2\)
\(=2\left[\left(x+7\right)-\left(2x-9\right)\right]\)
\(=2\left(x+7-2x+9\right)\)
\(=2\left(16-x\right)\)
Vậy ...
f) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-4\right)\left(x-2\right)\)
Vậy ...
Đặt \(A\left(x\right)=0\)
\(\rightarrow7x^3-5x^2-7x+3-7x^3+5x^2+17x+27=0\)
\(\Leftrightarrow10x+30=0\)
\(\Leftrightarrow10x=-30\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\) là nghiệm của đa thức \(A\left(x\right)\)
\(a.6x^3y^2.\left(2-x\right)+9x^2y^2.\left(x-2\right)\\ =6x^3y^2.\left(2-x\right)-9x^2y^2.\left(2-x\right)\\ =3x^2y^2\left(2-x\right)\left(2x-3\right)\)
Lời giải:
a.
$=6x^3y^2(2-x)-9x^2y^2(2-x)$
$=(2-x)(6x^3y^2-9x^2y^2)$
$=(2-x).3x^2y^2(2x-3)=3x^2y^2(2-x)(2x-3)$
b.
$=(x^2-y^2)-(4x-4y)=(x-y)(x+y)-4(x-y)$
$=(x-y)(x+y-4)$
c.
$81x^2-(9y^2-6yz+z^2)$
$=(9x)^2-(3y-z)^2=(9x-3y+z)(9x+3y-z)$
a) f(x) + g(x) = \(5x^2-2x+5+5x^2-6x-\dfrac{1}{3}=10x^2-8x+\dfrac{14}{3}\)
b) f(x) - g(x) = \(5x^2-2x+5-5x^2+6x+\dfrac{1}{3}=4x+\dfrac{16}{3}\)
c) Ngiệm của f(x) - g(x) chính là nghiệm của \(4x+\dfrac{16}{3}\)
Ta có: \(4x+\dfrac{16}{3}=0\Leftrightarrow4x=-\dfrac{16}{3}\Leftrightarrow x=-\dfrac{4}{3}\)
Vậy nghiệm của f(x) - g(x) là \(-\dfrac{4}{3}\)
Đặt E(x)=0
\(\Leftrightarrow5x^2+2022=0\)
\(\Leftrightarrow5x^2=-2022\)(Vô lý)
Để x là nghiệm của E(x) thì:
5x2 + 2020= 0
⇔ 5x2 = -2022
Mà 5x2 > 0 ( Với mọi x )
⇒ E(x) không có nghiệm.