tìm x dựa vào tính chất 2 phân số bằng nhau
\(\dfrac{x}{-3}\) = \(\dfrac{-5}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{5} = \dfrac{{1.3}}{{5.3}} = \dfrac{3}{{15}}\);
\(\dfrac{{ - 10}}{{55}} = \dfrac{{ - 10:5}}{{55:5}} = \dfrac{{ - 2}}{{11}}\)
Vậy các cặp phân số bằng nhau là: \(\dfrac{1}{5} = \dfrac{3}{{15}}; \dfrac{{ - 10}}{{55}} = \dfrac{{ - 2}}{{11}}\)
a: \(\dfrac{x}{-3}=\dfrac{-5}{15}\)
nên x=1
b: \(\dfrac{1173}{x}=\dfrac{3}{5}\)
nên \(x=\dfrac{1173}{3}\cdot5=1955\)
Bài 2:
a: -2*(-27)=54
6*9=54
=>Hai phân số này bằng nhau
b: -1/-5=1/5=5/25<>4/25
Bài 3:
a: =>16/x=-4/5
=>x=-20
b: =>(x+7)/15=-2/3
=>x+7=-10
=>x=-17
1.
=2/5 x 12/3 + 2/5 x 15/3 + 2/5 x 1
= 2/5 x (12/3 + 15/3 + 1)
=2/5 x 1
=2/5
2.a=1;2
\(\dfrac{3}{5}và\dfrac{15}{25}và\dfrac{21}{35};\dfrac{5}{8}và\dfrac{20}{32}\)
\(\dfrac{3}{5}=\dfrac{9}{15}=\dfrac{15}{25}=\dfrac{21}{35}\\ \dfrac{5}{8}=\dfrac{20}{32}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)
\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)
b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)
\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)
Bài 3:
a: Sửa đề: AMCN
Ta có: ABCD là hình bình hành
=>BC=AD(1)
Ta có: M là trung điểm của BC
=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)
Ta có: N là trung điểm của AD
=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra BM=MC=NA=ND
Xét tứ giác AMCN có
MC//AN
MC=AN
Do đó: AMCN là hình bình hành
b: Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)
nên ABMN là hình thoi
c: Ta có: BM//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
=>\(\widehat{EBM}=60^0\)
Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)
nên ANME là hình thang cân
=>AM=NE
Ta có: \(\dfrac{2}{x}=\dfrac{y}{9}\)
nên xy=18
Đạt \(\dfrac{x}{4}=\dfrac{y}{8}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)
Ta có: xy=18
\(\Leftrightarrow32k^2=18\)
\(\Leftrightarrow k^2=\dfrac{9}{16}\)
Trường hợp 1: \(k=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=3\\y=8k=6\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-3\\y=8k=-6\end{matrix}\right.\)
a) \(\dfrac{2}{3};\dfrac{5}{8};\dfrac{24}{25}\)
b) \(\dfrac{10}{15};\dfrac{12}{18};\dfrac{18}{27}\)
Bài 4:
a) \(\dfrac{2.7.13}{26.35}=\dfrac{2.7.13}{13.2.7.5}=\dfrac{1}{5}\)
b) \(\dfrac{23.5-23}{4-27}=\dfrac{23.\left(5-1\right)}{-23}=\dfrac{23.4}{-23}=-4\)
c) \(\dfrac{2130-15}{3550-25}=\dfrac{2115}{3525}=\dfrac{3}{5}\)
\(\dfrac{x}{-3}=\dfrac{-5}{15}\\ =>x\cdot15=\left(-5\right)\cdot\left(-3\right)\\ =>x\cdot15=15\\ =>x=1\)
2 phân số bằng nhau khi tích chéo bằng nhau