Cho a khác 0 . giai bat phuong trinh: \(\frac{1}{x}+\frac{3}{2a}<\frac{1}{x+3a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề \(\frac{x+2}{x-3}>1\)
\(\Rightarrow\frac{x+2}{x-3}>\frac{x-3}{x-3}\)
\(\Rightarrow x+2>x-3\)
\(\Rightarrow x-x>-2-3\)
\(\Rightarrow S=\varnothing\)
ĐỀ\(\Leftrightarrow x+2>x-3\Leftrightarrow x-x>-3-2\Leftrightarrow0>-5\)
vì bất đằng thức cuối đúng => bất đẳng thức đầu đúng
K MÌNH NHA =)) ^_^
a,Vì a<b nên suy ra 2a<2b. =>2a-3<2b-3
b,
c,\(\frac{20x-25}{15}>\frac{21-3x}{15}\)
<=>20x-25>21-3x
<=>23x>46
<=>x>2
\(\frac{2x+1}{x-3}>1\)
\(\Leftrightarrow2x+1>x-3\)
\(\Leftrightarrow2x-x>-3-1\)
\(\Leftrightarrow x>-4\)
ĐK: a \(\ne\) 0
BPT tương đương
x +\(\frac{x}{a}\)- \(\frac{1}{a}\)- \(\frac{x}{a}\)- \(\frac{1}{a}\)+ (a - 2)x < 0
<=> x - \(\frac{2}{a}\)+ (a - 2) x < 0
<=> (a - 1)x < \(\frac{2}{a}\)
TH1: a = 1: BPT luôn đúng với mọi x
TH2: a > 1: BPT tương đương:
x < \(\frac{2}{a\left(a-1\right)}\)
TH3: a < 1 (a\(\ne\)0) BPT tương đương:
x > \(\frac{2}{a\left(a-1\right)}\)
( 2x + 1)( 3 - 2x)( 1 - x) > 0
Lập bảng xét dấu , ta có :
Vậy , nghiệm của BPT : \(\dfrac{-1}{2}< x< 1\) hoặc : x > \(\dfrac{3}{2}\)