K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Bài này dễ ẹc, cho tí não vào là ok 

Giải

Dự đoán dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\) khi đó ta tìm dc \(S=2\)

Ta sẽ chứng minh nó là GTNN của \(S\)

Thật vậy, theo BĐT Cauchy-Schwarz ta có: 

\(Σ\frac{a^2+b}{b+c}\ge\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\)

Vậy ta chỉ cần chứng minh rằng \(\frac{\left(Σa^2+1\right)^2}{Σa^2\left(b+c\right)+Σa^2+Σab}\ge2\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

BĐT cuối cùng có thể biến đổi như sau:

\(1+\left(Σa^2\right)^2\ge2Σa^2\left(b+c\right)+2Σab\)

\(\Leftrightarrow1+\left(Σa^2\right)^2\ge2Σa^2-2Σa^3+2Σab\)

\(\Leftrightarrow\left(Σa^2\right)^2+2Σa^3\geΣa^2\) điều này đúng, vì 

\(Σa^3\ge\frac{Σa^2}{3}\)(BĐT Chebyshev). Và \(\left(Σa^2\right)^2\ge\frac{Σa^2}{3}\)

đề hay -,- \(a,b,c>0\)\(\Rightarrow\)\(a+b+c>0\) mâu thuẫn GT 

... 

8 tháng 11 2018

A+b+c=1

22 tháng 12 2017

a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D

22 tháng 12 2017

Áp dụng BĐT Mincopxki và AM-GM có:

\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)

\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)

Khi \(a=b=c=2\)

22 tháng 7 2019

Em không chắc đâu nha, sai thì xin thông cảm cho ạ

\(a=b=c=\frac{\sqrt{3}}{3}\Rightarrow B=\frac{3\sqrt{3}}{2}\). Ta se chung minh do la gia tri min cua B. That vay:

\(BĐT\Leftrightarrow\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2\sqrt{a^2+b^2+c^2}}\)

BĐT trên đồng bậc, nên ta chuẩn hóa a2 + b2 + c2 = 3 và chứng minh:

\(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{3}{2}\) (2) 

Ta chứng minh BĐT sau: \(\frac{a}{3-a^2}\ge\frac{1}{2}a^2\Leftrightarrow\frac{a^2}{2}-\frac{a}{3-a^2}\le0\)

\(\Leftrightarrow\frac{-\left(a-1\right)^2a\left(a+2\right)}{2\left(3-a^2\right)}\le0\) (Đúng)

Tương tự với hai BĐT còn lại và cộng theo vế suy ra BĐT (2) là đúng.

Suy ra BĐT (1) là đúng suy ra \(B_{min}=\frac{3\sqrt{3}}{2}\)

Vậy...

22 tháng 7 2019

Xét \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)

<=> \(a^4-a^2+\frac{2\sqrt{3}}{9}a\ge0\)

<=> \(a\left(a+\frac{2\sqrt{3}}{3}\right)\left(a-\frac{\sqrt{3}}{3}\right)^2\ge0\)luôn đúng

=> \(B\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

Min \(B=\frac{3\sqrt{3}}{2}\)khi \(a=b=c=\frac{\sqrt{3}}{3}\)

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

1,

\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)

\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)

lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)

\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

\(\Rightarrow A\ge4+3\sqrt{2}\)

câu 2

ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)

20 tháng 6 2018

\(A=\frac{1}{a^2+b^2+c^2}+\frac{1}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)

\(>=\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+ac+bc}\)(bđt svacxo)\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{1}{ab+ac+bc}+\frac{7}{ab+ac+bc}\)

\(>=\frac{9}{a^2+b^2+c^2+ab+ac+bc+ac+ac+bc}+\frac{7}{ab+ac+bc}\)(bđt svacxo)

\(=\frac{9}{a^2+b^2+c^2+2ab+2ac+2bc}+\frac{7}{ab+ac+bc}=\frac{9}{\left(a+b+c\right)^2}+\frac{7}{ab+ac+bc}\)

\(=\frac{9}{1}+\frac{7}{ab+ac+bc}=9+\frac{7}{ab+ac+bc}\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc>=ab+ac+bc+2ab+2ac+2bc\)

\(=3ab+3ac+3bc=3\left(ab+ac+bc\right)\Rightarrow\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\cdot1=\frac{1}{3}>=ab+ac+bc\Rightarrow ab+ac+bc< =\frac{1}{3}\)

\(\Rightarrow9+\frac{7}{ab+ac+bc}>=9+\frac{7}{\frac{1}{3}}=9+7\cdot3=9+21=30\)

\(\Rightarrow A>=30\)dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

vậy min A là 30 khi \(a=b=c=\frac{1}{3}\)