cho 2 da thuc:\(p\left(x\right)=x^2+2mx+m^2\)
\(q\left(x\right)=x^2+\left(2m+1\right)x+m^2\)
tim m biet \(p\left(2\right)=q\left(-2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
You học tham số rồi hả ( Trước khi giải bài này you lên google tìm định nghĩa tham số hay trong sách j đó đi )
\(P\left(1\right)=1^2+2m.1+m^2\)
\(Q\left(0\right)=0+\left(2m^3+1\right).0+m^2=m^2\)
\(P\left(1\right)=Q\left(0\right)\)
\(\Rightarrow1+2m+m^2=m^2\)
\(\Rightarrow1+2m=0\)
\(\Rightarrow2m=-1\)
P(1)= 12+2.m.1+m2
=1+2m+m2
Q(-1)= (-1)2+(2m+1).(-1) +m2
=1-2m-1+m2
= m2-2m
P(1)-Q(-1)= 1+2m+m2-m2+2m=0
1+4m=0
=>m=-4
\(a)\left(1+m\right)x^2-2mx+2m=0\\ \Delta=\left(2m\right)^2-4\left(1+m\right).2m\\ =4m^2-8m^2-8m\\ =-4m^2-8m\)
Để phương trình có nghiệm \(\Delta\ge0\)
\(-4m^2-8m\ge0\\ \Leftrightarrow-4m\left(m+2\right)\ge0\\ m\left(m+2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\le0\\m\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2\le m\le0\)
\(b)\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\\ \Delta=\left(2m-3\right)^2-4\left(m-2\right)\left(5m-6\right)\\ =4m^2-12m+9-20m^2+64m-48\\ =-16m^2+52m-39\)
Để phương trình có nghiệm thì \(\Delta\ge0\)
\(-16m^2+52m-39\ge0\\ \Leftrightarrow m\in\left(\dfrac{13\pm\sqrt{13}}{8}\right)\)
Vậy...
Bài toán bạn định hỏi, theo tác giả nói, có đúng 3 nghiệm phân biệt.
Để phương trình \(x^2-2mx-4\left(m^2+1\right)=0\) luôn có 2 nghiệm phân biệt (vì \(\Delta^'=m^2+4\left(m^2+1\right)=5m^2+4>0.\))
Xét phương trình thứ hai \(x^2-4x-2m\left(m^2+1\right)=0\). Nếu phương trình này vô nghiệm thì pt đã cho có tối đa 2 nghiệm, mâu thuẫn. Vậy phương trình thứ 2 có nghiệm kép hoặc có 2 nghiệm phân biệt.
Xét trường hợp phương trình thứ hai có nghiệm kép, tức
\(4+2m^3+2m=0\to m^3+m+2=0\to\left(m+1\right)\left(m^2-m+2\right)=0\)
Do đó \(m=-1.\) Thử lại, không thoả mãn vì phương trình đầu có nghiệm x=2.
Nếu phương trình thứ hai có hai nghiệm phân biệt thì hai phương trình phải có nghiệm chung là \(x_0\), do đó
\(x^2_0-4x_0-2m\left(m^2+1\right)=0\) và \(x_0^2-2mx_0-4\left(m^2+1\right)=0\). Trừ hai phương trình ta được \(\left(2m-4\right)x_0=\left(2m-4\right)\left(m^2+1\right)\). Do đó \(m=2\) hoặc \(x_0=m^2+1.\) Khi \(m=2\) thì hai phương trình trùng nhau nên phương trình đã cho có đúng 2 nghiệm phân biệt, loại. Giả sử \(x_0=m^2+1.\)Khi đó \(\left(m^2+1\right)^2-4\left(m^2+1\right)-2m\left(m^2+1\right)=0\to m^2+1-4-2m=0\)
\(m^2-2m-3=0\to m=-1,3.\)
Thử lại ta thấy \(m=-1,3\) đều thoả mãn.