Cho tam giác MNP cân tại M có 2 đường trung tuyến NE và PF cắt nhau tại điểm O a) Chứng minh NE và PF b) Chứng minh MO là đường phân giác của tam giác MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có
\(\widehat{EMN}\) chung
Do đó: ΔMEN~ΔMFP
2: Xét ΔHFN vuông tại F và ΔHEP vuông tại E có
\(\widehat{FHN}=\widehat{EHP}\)(hai góc đối đỉnh)
Do đó: ΔHFN~ΔHEP
3: Ta có; ΔMEN~ΔMFP
=>\(\dfrac{ME}{MF}=\dfrac{MN}{MP}\)
=>\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)
Xét ΔMEF và ΔMNP có
\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)
\(\widehat{EMF}\) chung
Do đó: ΔMEF~ΔMNP
4: Ta có: ΔHFN~ΔHEP
=>\(\dfrac{HF}{HE}=\dfrac{HN}{HP}\)
=>\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)
Xét ΔHFE và ΔHNP có
\(\dfrac{HF}{HN}=\dfrac{HE}{HP}\)
\(\widehat{FHE}=\widehat{NHP}\)(hai góc đối đỉnh)
Do đó: ΔHFE~ΔHNP
a) Ta có: \(FN=\dfrac{1}{2}MN\) (F là trung điểm MN).
\(EP=\dfrac{1}{2}MP\) (E là trung điểm MP).
Mà MN = MP (Tam giác MNP cân tại M).
\(\Rightarrow FN=EP.\)
Xét tam giác NPE và tam giác PNF:
NP chung.
\(\widehat{N}=\widehat{P}\) (Tam giác MNP cân tại M).
\(FN=EP\left(cmt\right).\)
\(\Rightarrow\) Tam giác NPE = Tam giác PNF (c - g - c).
b) Tam giác NPE = Tam giác PNF (cmt).
\(\Rightarrow\widehat{ENP}=\widehat{FPN}.\)
\(\Rightarrow\) Tam giác HNP cân tại H.
a) CÓ TAM GIÁC MNP CÂN TẠI M(gt)
=> MN=MP( ĐN TAM GIÁC CÂN)
XÉT TAM GIÁC MFP CÂN TẠI F VÀ TAM GIÁC MEN CÂN TẠI E CÓ:
MP=MN(CMT)
GÓC M CHUNG
=> TAM GIÁC MFP = TAM GIÁC MEN( CH-GN)
b)CÓ TAM GIÁC MFP = TAM GIÁC MEN( CM Ở CÂU a)
XÉT TAM GIÁC MFO VUÔNG TẠI F VÀ TAM GIÁC MEO VUÔNG TẠI E CÓ:
MO CHUNG
MF=ME( CMT)
=> TAM GIÁC MFO = TAM GIÁC MEO( CH-CGV)
=> GOC FMO = GÓC EMO( 2 GÓC TƯƠNG ỨNG)
=> MO LÀ TIA PHÂN GIÁC CỦA GÓC NMP
Làm
a) Xét hai tam giác vuông NMD và tam giác vuông NED có :
ND là cạnh chung
góc MND = góc END ( gt )
Do đó : tam giác NMD = tam giác NED ( cạnh huyền - góc nhọn )
b) Theo câu a) ta có : Tam giác NMD = tam giác NED
=> +) NM = NE nên N thuộc đường trung trực của ME
+) DM = DE nên D thuộc đường trung trực của của ME
Vậy ND là đường trung trực của ME
Vì phần c của cậu sai đề ( nối B với F nhưng đề bài k có B )
Còn phần d thì chưa đủ ý để tìm đc MD
HỌC TỐT
a: Xét ΔFNP và ΔEPN có
FN=EP
\(\widehat{FNP}=\widehat{EPN}\)
NP chung
Do đó: ΔFNP=ΔEPN
b: Xét ΔHNP có \(\widehat{HPN}=\widehat{HNP}\)
nên ΔHNP cân tại H
a: Xét ΔMEN và ΔMFP co
ME=MF
góc M chung
MN=NP
=>ΔMEN=ΔMFP
=>EN=FP
b: Xét ΔFNP và ΔEPN có
FN=EP
NP chung
FP=EN
=>ΔFNP=ΔEPN
=>góc ONP=góc OPN
=>ON=OP
Xét ΔMON và ΔMOP có
MO chung
ON=OP
MN=MP
=>ΔMON=ΔMOP
=>góc NMO=góc PMO
=>MO là phân giác của góc NMP
Cảm ơn bạn