Cho A = \(\frac{3\left|x\right|+2}{4\left|x\right|-5}\). Tìm số nguyên x để A đạt giá trị lớn nhất .Tìm giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất .
I x - 2017 I có giá trị nhỏ nhất khi x = 2017
Khi đó I x - 2017 I + 2 = 2
A = 4032 / 2 = 2016
Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017
GTLN A = 2016
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=\frac{4}{\left|x-5\right|+2012}\) có GTLN
Ta thấy: |x - 5| \(\ge\)0 <=> |x - 5| + 2012 \(\ge\)2012
Nên B = \(\frac{4}{\left|x-5\right|+2012}\le\frac{4}{2012}=\frac{1}{503}\)
Vậy GTLN của B là \(\frac{1}{503}\) khi và chỉ khi |x - 5| = 0 < = > x = 5
Để B đạt GTLN thì \(\frac{4}{\left|x-5\right|+2012}\) phải đạt GTLN
=> \(\frac{4}{\left|x-5\right|+2012}\) phải là số nguyên dương lớn nhất có thể
\(\Rightarrow\left|x-5\right|+2012\) phải đạt GTNN
Ta có:
\(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+2012\ge2012\)
Dấu "=" xảy ra <=> x - 5 = 0
<=> x = 5
Khi đó, ta đc:
\(B=\frac{4}{2012}=\frac{1}{503}\)
Vậy B đạt GTLN là \(\frac{1}{503}\Leftrightarrow x=5\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)
\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)
\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(N=\frac{-x^3-2x^2-2x}{x}\)
\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)
\(N=-\left(x^2+2x+2\right)\)
b) \(N=-\left(x^2+2x+2\right)\)
\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)
\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)
Max N = -1 \(\Leftrightarrow x=-1\)
Vậy .......................