cho tam giác nhọn abc. trên cạnh ac lấy điểm d sao cho góc adb=góc abc
a, chứng minh tam giác adb và abc
b, vẽ phân giác ae. chứng minh ad/ab=be/ec
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: ΔABD=ΔAED
=>góc AED=góc ABD=90 độ
c: Xét ΔAEF vuông tại A và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
d: DB=DE
mà DE<DC
nên DB<DC
a) Xét \(\Delta ABE\) và \(\Delta AFE:\)
\(AB=AF\left(gt\right).\)
\(\widehat{BAE}=\widehat{FAE}\) (AD là phân giác \(\widehat{A}).\)
AE chung.
\(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right).\)
b) Xét \(\Delta BEC:\)
\(BE+EC>BC.\left(1\right)\)
Xét \(\Delta ABC:\)
\(AC>AB\left(gt\right).\)
\(\Rightarrow AC-AB< BC.\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) \(BE+EC>AC-AB.\)
Hình tự vẽ nha
xét tam giác ADB và tam giác ABC có
\(\widehat{ADB}=\widehat{ABC} (GT)\)
\(\widehat{A} chung\)
=> tam giác ADB đồng dạng vs tam giác ABC (g-g)
=> \(\dfrac{AD}{AB}=\dfrac{AB}{AC} (TSĐD)\)(1)
xét tam giác ABC có
AE là PG của góc A
E ∈ BC
=>\(\dfrac{EB}{EC}=\dfrac{AB}{AC} (TC \) tia pg trong tam giác) (2)
từ 1 và 2 =>\(\dfrac{AD}{AB}=\dfrac{EB}{EC}\)
có ai ko? giúp mình vs ạ!!!