K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

900,2000

1949,1951

1956,1958

1000

9999

1023

3210
 

29 tháng 10 2016

phương pháp: phân tích 1 số ra thừa số nguyên tố

(lâu thì dùng máy tính)

21 tháng 9 2021

a) Gọi 2 số tự nhiên liên tiếp đó là: \(n,n+1\left(n\in N\right)\)

\(\Rightarrow n\left(n+1\right)=650\)

\(\Rightarrow n^2+n-650=0\)

\(\Rightarrow\left(n+\dfrac{1}{2}\right)^2=\dfrac{2601}{4}\)

\(\Rightarrow n+\dfrac{1}{2}=\dfrac{51}{2}\)

\(\Rightarrow n=25\)

Vậy 2 số đó là 25,26

 

21 tháng 9 2021

thank 

 

 

 

11 tháng 10 2017

a,   Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2

 Nếu a ko chia hết cho 2 =>a là số lẻ

             a=2k+1

=>a+1=(2k+1)+1

=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)

b,     Nếu a chia hết cho 3=> có 1 số chia hết cho 3

        Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3

                 nếu a=3k+2 thì

        =>a+1=3k+3, chia hết cho 3.

11 tháng 10 2017

A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)

Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ 

Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2

B) 

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2

b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

a: Vì trong hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn nên trong hai số tự nhiên liên tiếp, sẽ có một số chia hết cho 2

Bài 1: Số A là 2000 và số B là 1000.
Bài 2: Số A là 4000 và số B là 1000.
Bài 3: Không có cặp số tự nhiên A và B thỏa mãn yêu cầu.
Bài 4: Số A là 9876 và số B là 2469.