Cho ΔABC nhọn, đường cao BM, CN, Gọi H là giao điểm của BM và CN; E là giao điểm của AH, BC. C/m:
a tứ giác ANEC nội tiếp đtron
b tứ giác AMEB nội tiếp dtron
c tứ giác BNHE noọi tiếp đtron
d tứ giác MHEC nội tiếp đtron
e NH là phân giác ^MNE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C M M M N N N H H H K K K I I I O O O \(\Delta BMC:\widehat{BMC}=90^0;OB=OC\Rightarrow OM=OB=OC\Rightarrow\widehat{OMC}=\widehat{ACB}\left(1\right)\)(do tam giác OMC cân)
\(\Delta AMH:\widehat{AMH}=90^0;AI=HI\Rightarrow AI=HI=IM\Rightarrow\widehat{IAM}=\widehat{IMA}\left(2\right)\)(do tam giác IAM cân)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{IMA}+\widehat{OMC}=\widehat{IAM}+\widehat{OCM}=90^0\Rightarrow\widehat{IMO}=90^0\)
Tương tự thì \(\widehat{INO}=90^0\)
Suy ra \(\widehat{NIM}+\widehat{NOM}=180^0\left(DPCM\right)\)
Tham khảo:
a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.
Vì AB = AC (tính chất tam giác cân)
\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)
Xét tam giác AMB và tam giác ANC ta có :
AM = AN (cmt)
AB = AC
Góc A chung
\( \Rightarrow \Delta AMB =\Delta ANC\)
\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )
b) Vì BM và CN là các đường trung tuyến
Mà I là giao điểm của BM và CN
\( \Rightarrow \) I là trọng tâm của tam giác ABC
\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC
\( \Rightarrow \) H là trung điểm của BC
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
ΔPKN đồng dạng với ΔPMA
=>góc PKN=góc PMH
=>AKNM nội tiếp
mà góc ANH=góc AMH=90 độ
nên ANHM nội tiếp đường tròn đường kính AH
=>góc AKH=góc ANH
=>AK vuông góc KH
Kẻ đường kính AI' của (O)
=>I'K vuông góc AK
=>K,H,I' thẳng hàng
AC vuông góc CI'; AB vuông góc BI'
=>CI'//BH và BI'//CH
=>BHCI' là hình bình hành
=>K,H,I thẳng hàng
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Xét ΔNBC và ΔMCB có
NB=MC
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
mà AB=AC
nên AI là đường trung trực của BC
=>H là trung điểm của BC