Cho đa thức P(X)= x^8 - x^5 + x^2 -x + 1.
Chứng minh rằng P(x)>0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)
=>A(x) > 0 \(\forall x\inℝ\)
A(x)=x4+2x2+4
=x4+x2+x2+1+3
=x2.(x2+1)+(x2+1)+3
=(x2+1)(x2+1)+3
=(x2+1)+3>0 với mọi x thuộc R