A =\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).................\left(\frac{1}{100^2}-1\right)\)
Tính và rút gọn
Chú ý -1 không phải trừ trên tử đâu
giúp mình đi
ngày mai mình thi tỉnh rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{1}{31}.\left[\frac{5}{31}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
= \(\frac{1}{31}.\left(\frac{5}{31}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{5}{31}-\frac{21}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{-626}{155}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left(\frac{-5321}{155}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{30.31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{30}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{30}{31}\)
=\(\frac{-671}{4805}\)
b,\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{bc}{abc}+\dfrac{ac}{bac}+\dfrac{ab}{abc}=0\)
=>\(\dfrac{ab+ac+bc}{abc}=0\)
=>ab+ac+bc=0
=>ab=-ac-bc
ac=-ab-bc
bc=-ab-ac
N=\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\)
N=\(\dfrac{1}{a^2+bc+bc}+\dfrac{1}{b^2+ca+ca}+\dfrac{1}{c^2+ab+ab}\)
N=\(\dfrac{1}{a^2-ab-ac+bc}+\dfrac{1}{b^2-ab-bc+ca}+\dfrac{1}{c^2-ac-bc+ab}\)
N=\(\dfrac{1}{a\left(a-b\right)-c\left(a-b\right)}+\dfrac{1}{b\left(b-a\right)-c\left(b-a\right)}+\dfrac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
N=\(\dfrac{1}{\left(a-c\right)\left(a-b\right)}+\dfrac{1}{\left(b-c\right)\left(b-a\right)}+\dfrac{1}{\left(c-b\right)\left(c-a\right)}\)
N=\(\dfrac{b-c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}-\dfrac{a-c}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\dfrac{a-b}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)
N=\(\dfrac{b-c-a+c+a-b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)=0
Ta có: \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}...\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}....\frac{1558}{1560}\)
\(=\frac{1.4.2.5....38.41}{2.3.3.4....39.40}=\frac{\left(1.2.3..38\right)\left(4.5...41\right)}{\left(2.3.4...39\right)\left(3...40\right)}=\frac{41}{39.3}=\frac{41}{117}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}\frac{18}{20}.\frac{28}{30}.........\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...............\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.4......38\right)\left(4.5.6.7..........41\right)}{\left(2.3.4.5.........39\right)\left(3.4.5.6.........40\right)}\)
\(=\frac{1.41}{39.3}\)
\(=\frac{41}{117}\)
Vậy \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)=\frac{41}{117}\)