Cho \(\Delta\)ABC có \(\widehat{B}=70^o\), AB = 12 cm, AC = 16 cm, đường trung tuyến BD cắt AC tại D. Tính \(\widehat{BDC}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: b: Cắt BD kéo dài tại I
a: Xét ΔDBC có
DM vừa là đường cao, vừa là trung tuyến
nên ΔDBC cân tại D
b: AH vuông góc với DM
DM vuông góc với BC
Do đó: AH//BC
=>góc DAI=góc DCB
=>góc CAH=góc DBC
c: Xét ΔDAI có góc DAI=góc DIA
nên ΔDAI cân tại D
=>DA=DI
=>AC=BI
Xét ΔABC và ΔICB có
AB=IC
BC chung
AC=IB
DO đó: ΔABC=ΔICB
chứng minh tam giác ADB đồng dạng với tam giác ABC theo trường hợp canh góc cạnh
nen góc ADB=70 =>góc bdc=110
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>BD=60/7cm
tuong tụ Câu hỏi của TRUONG LINH ANH - Toán lớp 9 - Học toán với OnlineMath
a) Xét (O) có
ΔBDC nội tiếp đường tròn(gt)
BC là đường kính
Do đó: ΔBDC vuông tại D(Định lí)
Xét (O) có
ΔBEC nội tiếp đường tròn(gt)
BC là đường kính
Do đó: ΔBEC vuông tại E(Định lí)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AE\cdot AB=AD\cdot AC\)
Hình hơi xấu xíu :vv
a) Xét t.giác AMB và t.giác DMC có :
MA = MD ( gt )
\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)
MB = MC (gt)
Vậy t.giác AMB = t.giác DMC (c.g.c)
b) Do : t.giác AMB = t.giác DMC ( cmt )
=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét t.giác ABC và t.giác DCB có :
BC : cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB = DC ( cmt )
Vậy t.giác ABC = t.giác DCB ( c.g.c )
=> AC = BD
\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.
=> AC // BD
Vì : t.giác ABC = t.giác DCB ( cmt )
=> \(\widehat{BAC}=\widehat{BDC}=90^0\)
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A