cho x, y, z khác 0 và x-y-z=0
tính M=(1-z/x)(1-x/y)(1+y/z)
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-y-z=0
=>x=y+z và y=x-z và z=x-y
B=(1-z/x)(1-x/y)(1+y/z)+2023
\(=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{y+z}{z}+2023\)
\(=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}+2023=2023-1=2022\)
Ta có: \(x-y-z=0\)
\(\Rightarrow x-y=z\)
\(x-z=y\)
\(y+z=x\)
\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)
\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)
\(\Rightarrow B=-1\)
Ta có: x-y-z = 0
\(\Rightarrow\) x = y+z
\(\Rightarrow\)y = x-z
\(\Rightarrow\)z = x-y
Thay vào B ta suy ra: \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
= \(\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
= \(\left(\frac{-y}{x}\right).\left(\frac{z}{y}\right).\left(\frac{x}{z}\right)\)
= -y/y
= -1
Vậy B = -1
x+y+z=0
nên x+y=-z; y+z=-x; x+z=-y
\(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}=-1\)
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
M=(1-z/x)(1-x/y)(1+y/z)
M=[(x-z)/x].[(y-x)/y].[(y+z)/z]
M=y/x . -z/y. x/z(thay x-z=y;y-x=-z;y+z=x)
M=-1