Tính tổng: A =-2/15+-2/35+-2/63+-2/99+...+-2/9999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\right)\)
\(=-2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{99.101}\right)\)\(=-2\cdot\left(\frac{1}{3}-\frac{1}{101}\right)\)
=.....
mình quên đem máy tính nên k ghi đc đấp số
THÔNG CẢM
A = \(\frac{2}{3}+\frac{3}{15}+\frac{2}{35}+.....+\frac{2}{9999}\)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{101}\)
A = \(1-\frac{1}{101}\)
A = \(\frac{100}{101}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{1}{5.7}+....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}+0+0+...+0\)
\(=\frac{100}{101}\)
1/
A= 1/15+1/35+1/63+1/99+ ... + 1/9999
A=1/3.5+1/5.7+1/7.9+ ... +1/99.101
2A=2/3.5+2/5.7+2/7.9+ ... +2/99.101
2A=1/3-1/5+1/5-1/7+1/7-1/9+ ... + 1/99-1/101
2A=1/3-1/101
A=49/303
Sai thì thôi nhé
A= 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
A=1-1/7
A=6/7
a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)
=\(\frac{4^2-1^2}{4^2}\). \(\frac{5^2-1^2}{5^2}\). \(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)
Ta có công thức sau : a2-b2= a2 -ab+ab-b2
= a(a-b) + b(a-b)
= (a+b)(a-b)
ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC :
A= \(\frac{3.5}{4^2}\). \(\frac{4.6}{5^2}\). \(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)
= \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)
= \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)
= \(\frac{3.201}{200.4}\)
= \(\frac{603}{800}\)
b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\). \(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)
= \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)
=\(\frac{3^2.5}{101.103^2.105}\)
=\(\frac{3}{7500563}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}\)
\(A=\frac{98}{303}\)
A = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
= \(\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right):2\)\(=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
= \(\left(\frac{1}{3}-\frac{1}{101}\right):2=\frac{101-3}{303}:2=\frac{98}{303}:2=\frac{49}{303}\)
Dấu chấm trong bài là dấu nhân nha !
\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)
\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)
I don't know