K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

1/

Để hàm số trên đồng biến 

Thì m-1 > 0 ⇔ m>1

2/

a,<bạn tự vẽ>

b,Theo phương trình hoành độ giao điểm

\(2x=-x+3\Leftrightarrow3x=3\Leftrightarrow x=1\)

Thay x=1 vào y=2x

y=2.1=2

Vậy tọa độ giao điểm A là (1;2)

3/ Để (d) đi qua điểm M (1;-2)

Thì x=1 và y=-2

Thay x=1 và y=-2 vào (d)

\(-2=a\cdot1+1\Leftrightarrow a=-3\)

vậy ....

4 tháng 12 2021

Bài 1:

Để hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến.

=> \(m-1>0.\)

<=> \(m>1.\)

Bài 2:

b) Xét phương trình hoành độ giao điểm của 2 hàm số trên ta có:

       \(\text{2x = -x + 3.}\)

<=> \(\text{2x + x - 3= 0.}\)

<=> \(\text{3x - 3 = 0.}\)

<=> \(x=1.\)

=>   \(y=2.\)

Vậy A(1; 2).

Bài 3:

Vì (d) đi qua điểm M(1; -2).

=> -2 = a. 1 + 1.

<=> a = -3.

Vậy a = -3. 

3 tháng 10 2021

Bài 1:

Cường độ dòng điện qua điện trở: I = U : R = 12 : 60 = 0,2 (A)

Bài 2:

Điện trở tương đương: R = R1 + R2 = 3 + 5 = 8 (\(\Omega\))

Cường độ dòng điện qua mạch chính: I = U : R = 12 : 8 = 1,5 (A)

Bài 3:

Điện trửo tương đương: R = (R1.R2) : (R1 + R2) = (3.6) : (3 + 6) = 2 (\(\Omega\))

Có: U = U1 = U2 = 12V (Vì R1//R2)

Cường độ dòng điện qua mạch chính và các mạch rẽ:

I = U : R = 12 : 2 = 6 (A)

I1 = U1 : R2 = 12 : 3 = 4(A)

I2 = U2 : R2 = 12 : 6 = 2(A)

27 tháng 10 2021

I don't know 

Bài 1: 

a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)

8 tháng 11 2021

Bài 4:

\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)

Câu 16: A

Câu 14: C

Câu 12: A

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

6 tháng 7 2021

mình làm những bài bn chưa lm nhé

9B

10A

bài 2

have repainted

bàii 3

ride - walikking

swimming

watch

6 tháng 7 2021

Dù sao cũng cảm ơn bạn 🥰