K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Thử nhé.

A = x(2y-x) + 2y(x-2y)

A = 2y + 5 . (-5) + 2y.5

A = -10y - 25 + 10y

A = -25

NV
15 tháng 4 2022

Do \(x;y\in\left[0;2\right]\Rightarrow\left\{{}\begin{matrix}x\left(2-x\right)\ge0\\y\left(2-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow2x^2+4y^2\le4x+8y\)

\(P\le3^0+5^0+3^z+4\left(x+2y\right)=2+3^z+4\left(6-z\right)=3^z-4z+26\)

Xét hàm \(f\left(z\right)=3^z-4z+26\) trên \(\left[0;2\right]\)

\(f'\left(z\right)=3^z.ln3-4=0\Rightarrow z=log_3\left(\dfrac{4}{ln3}\right)=a\)

\(f\left(0\right)=27\) ; \(f\left(2\right)=27\)\(f\left(a\right)\approx-1,1\)

\(\Rightarrow f\left(z\right)\le27\Rightarrow maxP=27\)

(Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;2;2\right)\))

NV
15 tháng 4 2022

Ồ mà khoan, bài trước bị nhầm lẫn ở chỗ \(3^{2x-x^2}+5^{2y-y^2}\ge3^0+5^0\) mới đúng, ko để ý bị ngược dấu đoạn này

Vậy giải cách khác:

\(0\le x;y;z\le2\Rightarrow x\left(2-x\right)\ge0\Rightarrow2x-x^2\ge0\)

Lại có: \(2x-x^2=1-\left(x-1\right)^2\le1\)

\(\Rightarrow0\le2x-x^2\le1\)

Tương tự ta có: \(0\le2y-y^2\le1\)

Xét hàm: \(f\left(t\right)=3^t-2t\) trên \(\left[0;1\right]\)

\(f'\left(t\right)=3^t.ln3-2=0\Rightarrow t=log_3\left(\dfrac{2}{ln3}\right)=a\)

\(f\left(0\right)=1;\) \(f\left(1\right)=1\) ; \(f\left(a\right)\approx0,73\)

\(\Rightarrow f\left(t\right)\le1\Rightarrow3^t-2t\le1\Rightarrow3^t\le2t+1\)

\(\Rightarrow3^{2x-x^2}\le2\left(2x-x^2\right)+1\)

Hoàn toàn tương tự, ta chứng minh được: 

\(5^t\le4t+1\) với \(t\in\left[0;1\right]\Rightarrow5^{2y-y^2}\le4\left(2y-y^2\right)+1\)

\(3^t\le4t+1\) với \(t\in\left[0;2\right]\Rightarrow3^z\le4z+1\)

\(\Rightarrow P\le2\left(2x-x^2\right)+4\left(2y-y^2\right)+4z+3+2x^2+4y^2=4\left(x+2y+z\right)+3=27\)

Lần này thì ko sai được rồi

6 tháng 5 2018

Đặt \(x^2=a;y^2=b\left(\text{a,b }\ge0\right)\text{ ta có:}\)

\(a+b=2\)

\(\Rightarrow3a^2+5ab+2b^2+2b\)

\(=\left(3a^2+3ab\right)+\left(2ab+2b^2\right)+2b\)

\(=3a\left(a+b\right)+2b\left(a+b\right)+2b\)

\(=\left(a+b\right)\left(3a+2b\right)+2b\)

\(\text{Mà }a+b=2\text{ nên:}\)

\(=2\left(3a+2b\right)+2b\)

\(=6\left(a+b\right)=6.2=12\) 

Vậy....

6 tháng 5 2018
Khi x^2 + y^2 = 2 thì x sẽ = 1 hoặc -1. Vậy x và y = 1 hay -1. Ta thay số vào: 3x^4+5x^2y^2+2y^4+2y^2 = 3.1^4+5.1^2.1^2+2.1^4+2.1^1 = 3.1+5.1+2.1+2.1=12 (lưu ý là 1 hay -1 mũ chẵn (2,4,6,...) sẽ luôn bằng 1 nhé)
23 tháng 12 2020

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

26 tháng 12 2020

câu a đâu

 

7 tháng 7 2017

Ta có :

\(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)

=> \(\hept{\begin{cases}\left(x+2y\right)=0\\\left(y-1\right)=0\\\left(x-z\right)=0\end{cases}}\)=> \(\hept{\begin{cases}x=-2y\\y=1\\x=z\end{cases}}\)

=> \(\hept{\begin{cases}x=-2\\y=1\\z=-2\end{cases}}\)

M = x + 2y + 3z = -2 + 2 - 6 = (-6)

Chọn C

NV
31 tháng 8 2021

Đặt \(x+2y+1=a\)

\(P=a^2+\left(a+4\right)^2=2a^2+8a+16=2\left(a+2\right)^2+8\ge8\)

10 tháng 4 2023

dấu bằng xảy ra khi?

11 tháng 1 2021

\(\frac{3\times1,7-2\times1,25}{0,2}=13\)