tìm ccs số a,b,,c nguyên dương thỏa mãn
\(a^3+3a^2+5=5^b\)và \(a+3=5^c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+3a^2+5=5^b\)
\(\Rightarrow a^2\left(a+3\right)+5=5^b\)
\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)
\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)
=> c - 1 = 0 hoặc b - 1 = 0
+) b = 1, khi đó ko thoả mãn
+) c = 1 => a = 2 => b = 2
Ta có:
\(a^3+3a^2+5=5^b\)
\(\Leftrightarrow a^2\left(a+3\right)+5=5^b\)
\(\Leftrightarrow a^2.5^c+5=5b\)
\(\Leftrightarrow a^2.5^{c-1}+1=5^{b-1}\)
b-1=0 hoặc c-1=0
nếu b-1=0 thì thay vào không thỏa mãn
Nếu c-1=0 thì c=1 a=2 và b=2
a3+3a2+5=5b
=>a2(a+3)+5=5b
=>a2.5c+5=5b
=>5c<5b
=>5b chia hết cho 5c
=>5b chia hết cho a+3
=>a2(a+3)+5 chia hết cho a+3
=>5 chia hết cho a+3
..v..v..
=>a=2;c=1;b=2
\(a\in Z^+\)nên a3 + 3a2 + 5 > a + 3 (vì 3a2 > a ; 5 > 3) hay 5b > 5c
=> b > c =>\(5^b⋮5^c\Rightarrow\left(a^2+3a^2+5\right)⋮\left(a+3\right)\Rightarrow\left[a^2\left(a+3\right)+5\right]⋮\left(a+3\right)\Rightarrow5⋮a+3\)
\(a\in Z^+\)nên a + 3 > 3 => a + 3 = 5 => a = 2
Thay a vào các điều kiện đã cho,ta có 5b = 25 ; 5c = 5 => b = 2 ; c = 1
Vậy (a ; b ; c) = (2 ; 2 ; 1)
a=2
b=2
c=1