Cho hàm số `y=x^3-3x+1` có đồ thị `(C)`.Tìm tất cả giá trị của a để qua điểm `A(a;-1)` kẻ 3 tiếp tuyến đến đồ thị `(C)` sao cho trong đó có 2 tiếp tuyến vuông góc với nhau.Ai giúp mình với ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)
Đáp án B.
Pt tiếp tuyến đi qua A có dạng y=k(x-a)+1
Để có đúng 1 tiếp tuyến đi qua A thì hpt
có đúng một nghiệm
Thay (2) vào (1):
Đáp án B
Pt tiếp tuyến đi qua A có dạng y = k ( x − a ) + 1
Để có đúng 1 tiếp tuyến đi qua A thì hpt k ( x − a ) + 1 = − x + 2 x − 1 ( 1 ) k = − 1 ( x − 1 ) 2 ( 2 ) có đúng một nghiệm
Thay (2) vào (1):
Gọi phương trình tiếp tuyến là y = k( x - a ) + 1. Xét hệ phương trình.
- x + 2 x - 1 = k x - a + 1 - 1 x - 1 2 = k ⇒ 2 x 2 - 6 x + a + 3 = 0 - 1 x - 1 2 ⇒ ∆ ' = 3 - 2 a
Để có 1 tiếp tuyến thì 2 x 2 - 6 x + a + 3 = 0 có 1 nghiệm kép khác 1 hoặc có 2 nghiệm trong đó 1 nghiệm bằng 1 có
TH1. có nghiệm kép ∆ = 0 ⇔ a = 3 2
TH2. Có nghiệm bằng 1 nên a = 1. Khi đó phương trình có 2 nghiệm x =1, x= 2
Vậy S = 3 2 ; 1
Đáp án cần chọn là C
+ Phương trình đường thẳng d đi qua A và có hệ số góc k là : y= k ( x-a) + 1
+ Phương trình hoành độ giao điểm của d và C :
Hay kx2+ (-k-ka+2) x-3+ka=0 ( *)
+ Với k= 0 , ta có d: y= 1 là tiệm cận ngang đồ thị hàm số nên không thể tiếp xúc được.
+ Với k≠0, d và C tiếp xúc nhau khi (1) có nghiệm kép
Coi đây là phương trình bậc 2 ẩn k tham số a
+ Để qua A( a; 1)vẽ được đúng tiếp tuyến thì phương trình ∆ =0 có đúng một nghiệm k≠0.
*Xét 1-a= 0 hay a=1, ta có 4k+4= 0 hay k= -1 thỏa mãn
*Có f( 0)=4 nên loại đi trường hợp có hai nghiệm trong đó có một nghiệm là 0.
*Còn lại là trường hợp ∆ x = 0 có nghiệm kép khi
Tổng là 1+ 3/2=5/2.
Chọn C.
a) Đề hàm số nghịch biến thì a - 3 < 0 \(\Leftrightarrow a< 3\).
b) Hàm số đi qua điểm M (1; -2 ) nên: \(\left(a-3\right).1-3=-2\)\(\Leftrightarrow a-3=1\)\(\Leftrightarrow a=4\).
c) Đồ thị hàm số là một đường thẳng song song với đường thẳng y = 3x nên \(a-3=3\Leftrightarrow a=6\).