K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

hnuji9on ui bm, 76tfv45tj,

NV
16 tháng 5 2019

Có lẽ là đề sai, đề đúng phải là \(x=\frac{\sqrt{5}-1}{2}\)

Khi đó \(2x+1=\sqrt{5}\Rightarrow4x^2+4x+1=5\Leftrightarrow x^2+x-1=0\)

\(A=\frac{\left(x^2+x-1-2\right)^{2011}}{\left(x^3\left(x^2+x-1\right)-2\right)^{2011}}+\left(x^3\left(x^2+x-1\right)+1\right)^{2011}\)

\(A=\frac{\left(-2\right)^{2011}}{\left(-2\right)^{2011}}+1^{2011}=2\)

28 tháng 1 2016

kho qua

28 tháng 1 2016

quá khó là đằng khác

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

27 tháng 12 2018

\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)

\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)

28 tháng 12 2018

\(\frac{2011^3+11^3}{2011^3+2000^3}\)

\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)

\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)

\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)

\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)

                                          đpcm

Ta có : \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)

\(=\frac{\left(\sqrt{5}+2\sqrt[3]{\sqrt{5}-2^{ }}\right)^3}{\sqrt{5}+3-\sqrt{5}}\) 2)3 trong căn bậc nhé mk ko vt đc ( ko bt giải thick thông cảm )

\(=\frac{\sqrt{5}^2-2^2}{3}\)

\(=\frac{1}{3}\)

Vậy \(A=\left(3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right)^{2011}=3^{2011}\)

18 tháng 8 2019

Trả lời

A=(3x3+8x2+2)2011 với x=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}\sqrt{9-6\sqrt{5}+5}}\)

=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)

=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)

=\(\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)

=1/3

Học tốt !

11 tháng 8 2019

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)

\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1}{2009}\)

11 tháng 8 2019

1,

\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)

\(|x- \frac{2}{7}|=\frac{1}{7}\)

<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)

Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)

Học tốt

26 tháng 11 2019

Ta có

\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)

\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)

Với \(x=\frac{1}{3}\)thay vào bt ta có

\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)

\(=3^{2011}\)

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?