ΔABC nhọn có AB<AC. CÁc đường cao AD, BE, CF cát nhau tại H. Gọi M là trung điểm BC, qua H kẻ đường vuông góc HM cắt AB và AC tại I và K
1. a, cm AH.HM = CM.HI
b, HI = HK
2. cm AD/HD+BH/HE+CH/HF>6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAFC vuông tại F và ΔAEB vuông tại E có
CF=BE
góc ACF=gócABE
=>ΔAFC=ΔAEB
=>AC=AB
Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
EB=DA
góc C chung
=>ΔCEB=ΔCDA
=>CB=CA=AB
=>ΔABC đều
a, Xét tam giác ABD và tam giác ACE
^A _ chung
^ADB = ^AEC = 900
Vậy tam giác ABD ~ tam giác ACE (g.g)
b, Xét tam giác CBD và tam giác CAK ta có
^C _ chung
^CDB = ^CKA = 900
Vậy tam giác CDB ~ tam giác CKA (g.g)
\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)
c, Xét tam giác KDC và tam giác ABC
^C _ chung
\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng )
Vậy tam giác KDC ~ tam giác ABC (c.g.c)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: Xét ΔHDB vuông tại D và ΔHEA vuông tại E co
góc DHB=góc EHA
=>ΔHDB đồng dạng với ΔHEA
=>HD/HE=HB/HA
=>HD*HA=HE*HB
c: góc AFH+góc AEH=90+90=180 độ
=>AFHE nội tiếp
=>góc BEF=góc BAD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC