Bài 1
( x ² + 1 ) x ( x - 4) > 0
Bài 2
a) A = ( x - 2 ) ² + ( y + 3) ² b) B = ( 5 - x ) ² + ( y -1) ² - 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>(x+2018)(6x-3)=0
=>x+2018=0 hoặc 6x-3=0
=>x=1/2 hoặc x=-2018
2: x(x-11)+3(11-x)=0
=>(x-11)(x-3)=0
=>x=11 hoặc x=3
4: =>(x+5)(2x-4)=0
=>2x-4=0 hoặc x+5=0
=>x=2 hoặc x=-5
3: =>(x-3)(x+2)=0
=>x=3 hoặc x=-2
Bài 1:
\(6x\left(x+2018\right)-3\left(x+2018\right)=0\)
\(\Leftrightarrow\left(x+2018\right)\left(6x-3\right)=0\)
\(\Leftrightarrow3\left(x+2018\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2018\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 2:
\(x\left(x-11\right)+3\left(11-x\right)=0\)
\(\Leftrightarrow x\left(x-11\right)-3\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=11\end{matrix}\right.\)
Câu 3:
\(x\left(x-3\right)-2\left(3-x\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Câu 4:
\(2x\left(x+5\right)-4\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\2x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Bài 2:
a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=x^4-16\)
b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\)
Bài 1:
Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)
\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)
\(\Leftrightarrow-x^2-3x+64=0\)
\(\Leftrightarrow x^2+3x-64=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)
a) \(\left(2x^3-x^2+5x\right):x\)
\(=\dfrac{2x^3-x^2+5x}{x}\)
\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)
\(=2x^2-x+5\)
b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)
\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)
\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)
\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)
c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)
\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)
\(=-x^3-2x+\dfrac{3}{2}\)
d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)
\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)
\(=-\left(2x^2-4xy+6y^2\right)\)
\(=-2x^2+4xy-6y^2\)
e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)
\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)
\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)
\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)
\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)
\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)
\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
Bài 1:
\(\left(x^2+1\right)\times\left(x-4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+1>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+1< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2>-1\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x^2< -1\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2>-1\\x>4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
Đề bài 2 là gì ạ?
Bài 2:
a: A=(x-2)^2+(y+3)^2>=0
Dấu = xảy ra khi x=2 và y=-3
b: B=(x-5)^2+(y-1)^2-5>=-5
Dấu = xảy ra khi x=5 và y=1