Cho HCN ABCD có :
2 đường chéo AC và BD ; mỗi đường chéo bằng 8cm
góc nhọn tạo bởi 2 đường chéo đó bằng 30 độ
Tính diện tích HCN ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ B là:
x-2y+1=0và x-7y+14=0
=>x=7 và y=3
AB: x-2y+1=0
=>BC: 2x+y+c=0
Thay x=7 và y=3 vào BC, ta được:
c+2*7+3=0
=>c=-17
=>2x+y-17=0
A thuộc AB nên A(2a+1;a); C thuộc BC nen C(c;17-2c)(a<>3; c<>7)
Gọi I là giao của AC và BD
Tọa độ I là;
\(\left\{{}\begin{matrix}x=\dfrac{2a+1+c}{2}\\y=\dfrac{a+17-2c}{2}\end{matrix}\right.\)
I thuộc BD nên 3c-a=18
=>a=3c-18
=>A(6c-35; 3c-18)
vecto MA=(6c-37; 3c-19)
vecto MC=(c-2;16-2c)
M,A,C thẳng hàng nên (6c-37)/(c-2)=(3c-19)/16-2c
=>c=7(loại) hoặc c=6(nhận)
=>A(1;0); C(6;5); B(7;3); D(0;2)
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.
Mình gợi ý câu b thôi, tại thấy câu a không có gì khó hết.
Gọi \(X,Y\) lần lượt là trung điểm \(MN,BD\). Tự CM \(A,X,Y,C\) thẳng hàng.
Cho \(XK\) cắt \(BD\) tại \(Y'\). Theo định lí Thales cho tam giác \(MXK,NXK\) CM được \(Y'\) là trung điểm \(BD\).
Tức là \(Y\) trùng với \(Y'\), tức là \(XY\) qua \(K\) hay \(A,K,C\) thẳng hàng.