K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

ai chat nhìu thì kt bn với mình nha

12 tháng 10 2019

Mình làm câu a) nha!!!

+) \(A=2009^{2010}+2009^{2009}\)

        \(=2009^{2009}.\left(2009+1\right)\)

        \(=2009^{2009}.2010\)

+) \(B=2010^{2010}=2010^{2009}.2010\)

Vì \(2010^{2009}>2009^{2009}\)nên \(2010^{2009}.2010>2009^{2009}.2010\)hay \(B>A\)

Vậy \(A< B\)

Hok tốt nha^^

1 tháng 4 2021

A=-2015/2015x2016

A=-1/2016

B=-2014/2014x2015

B=-1/2015

vi 2016>2015,-1/2016>-1/2015

vay A>B

b) Ta có: \(A=\dfrac{10^{2009}+1}{10^{2010}+1}\)

\(\Leftrightarrow10A=\dfrac{10^{2010}+10}{10^{2010}+1}=1+\dfrac{9}{10^{2010}+1}\)

Ta có: \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow10B=\dfrac{10^{2011}+10}{10^{2011}+1}=1+\dfrac{9}{10^{2011}+1}\)

Ta có: \(10^{2010}+1< 10^{2011}+1\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}>\dfrac{9}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{9}{10^{2010}+1}+1>\dfrac{9}{10^{2011}+1}+1\)

\(\Leftrightarrow10A>10B\)

hay A>B

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

3 tháng 3 2017

nếu bít thì trả lời ko bít thì thui

3 tháng 3 2017

con Lê Thị Thùy Thắm là con điên ,hâm chập mạch

9 tháng 3 2015

Cho C=\(10^{2010}+\frac{1}{10^{2010}}\)

Xét \(A_1=10^{2010}+\frac{1}{10^{2011}}\)và \(B^{ }_1=10^{2011}+\frac{1}{10^{2012}}\)

Ta có \(A_1-C=10^{2010}+\frac{1}{10^{2010}}-10^{2010}-\frac{1}{10^{2010}}\)

         \(A_1-C=10.\left(\frac{1}{10^{2011}}-\frac{1}{10^{2010}}\right)\)

Giair tượng tự ta được \(B_1-C=10^{2010}.\left(9+\frac{1}{10^{2012}}-\frac{1}{10^{2010}}\right)\)

Ta thấy \(\frac{1}{10^{2012}}-\frac{1}{10^{2010}}