K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2015

cái này bạn phải vẽ hình ra đã chứ

a: XétΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét ΔAHM vuông tại H và ΔCKM vuông tại K có

MA=MC

\(\widehat{AMH}=\widehat{CMK}\)

DO đó: ΔAHM=ΔCKM

Suy ra: MH=MK

Xét tứ giác AHCK có

Mlà trung điểm của AC

M là trung điểm của HK

Do đó: AHCK là hình bình hành

Suy ra: AK=CH

11 tháng 2 2020

A B C E H F D K M O N

MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)

=> góc FMB = góc ACB (đồng vị)

mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)

=> góc FMB = góc ABC 

xét tam giác BDM và tam giác MFB có : BM chung 

góc BDM = góc BFM = 90

=> tam giác BDM = tam giác MFB (ch-gn)

=> BD = FM (đn)       (1)

xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM  = 90

=> FHEM là hình chữ nhật  (dh)

=> FM = HE (tc)    và (1)

=> BD = HE       (2)

kẻ DO // AC 

=> góc BOD = góc ACB  (đồng vị)

góc ACB = góc ABC (cmt)

=> góc DBO = góc DOB  

=> tam giác DOB cân tại D (dh)

=> BD = DO    và (2)

=> DO = HE 

mà HE = CK (gt)

=> DO = CK       (3)

gọi DK cắt BC tại N

xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)

góc ODN = góc NKC do DO // AC (cách vẽ)    và (3)

=> tam giác DNO = tam giác KNE (g-c-g)

=> DN = NK (đn)

mà N nằm giữa D và K 

=> N là trung điểm của DK 

N thuộc BC 

=> BC đi qua trung điểm của DK